
The Visual Computer (2024) 40:6319–6339
https://doi.org/10.1007/s00371-023-03167-4

ORIG INAL ART ICLE

Real-scene-constrained virtual scene layout synthesis for mixed reality

Runze Fan1 · Lili Wang1,2 · Xinda Liu1 · Sio Kei Im3 · Chan Tong Lam3

Accepted: 25 August 2023 / Published online: 12 December 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Given a real source scene and a virtual target scene, the real-scene-constrained virtual scene layout synthesis problem is defined
as how to re-synthesize the layout of the virtual furniture in the virtual scene to form a new virtual scene such that the new
scene not only looks similar to the input real and virtual scenes but also is interactive. The goal of this problem is to maximize
interactivity and fidelity which are contradictory. To solve this problem, we propose a real-scene-constrained virtual scene
layout synthesis method to synthesize the layout of the virtual furniture in the new virtual scene. We split the scene layout
synthesis process into 3 interrelated steps: scene matching, matched furniture layout generating, and unmatched furniture
layout generating. For scene matching, we propose a deep scene matching network to predict the matching relationship
between real and virtual furniture. For matched furniture layout generating, we propose a layout parameters optimization
algorithm to predict suitable layouts of the matched virtual furniture. For unmatched furniture layout generating, we propose a
deep scene generating network to predict suitable layouts of unmatched virtual furniture.We evaluate the quality of ourmethod
to synthesize scenes of different kinds and sizes. The results show that, compared with the heuristic rules-based method, our
method has better matching accuracy and location accuracy. We also design a user study to evaluate the interactivity and
fidelity. Compared to the manual method and the heuristic rules-based method, our method has a significant improvement in
interactivity and fidelity.

Keywords Scene layout synthesis · Scene matching · Scene generating

1 Introduction

Mixed reality combines virtual scenes and real scenes to pro-
vide users with a more creative and immersive experience.

B Lili Wang
wanglily@buaa.edu.cn

Runze Fan
by2106131@buaa.edu.cn

Xinda Liu
liuxinda@buaa.edu.cn

Sio Kei Im
marcusim@mpu.edu.mo

Chan Tong Lam
ctlam@mpu.edu.mo

1 State Key Laboratory of Virtual Reality Technology and
Systems, Beihang University, XueYuan Road, Beijing
100191, Beijing, China

2 Peng Cheng Laboratory, Xingke Road, Shenzhen 518055,
Shenzhen, China

3 Macao Polytechnic University, R. de Luís Gonzaga Gomes,
Macao 999078, Macao, China

For example, if the user is in the conference room and wears
an augmented reality head-mounted display, the virtual-real
fusion scene observed is the sightseeing room. The user can
touch the real table in front of the userwith the immersion that
the user is torching the virtual table, and the user can sit on
the real chair with the immersion that the user is sitting on the
virtual sofa. In order to realize the above idea, the problemwe
need to solve is: given a real scene and a virtual scene, based
on the constraints of the real scene, how to rearrange the vir-
tual furniture in the virtual scene to form a new virtual scene,
and then integrate the new virtual scene with the real scene,
and provides the user with the experience of being immersed
in a virtual scene similar to the input, both visually and tac-
tilely. We refer to this problem as a real-scene-constrained
virtual scene layout synthesis problem.

The virtual scene layout synthesis problem is similar to
the scene retargeting problem, which aims at adjusting input
virtual scenes into arbitrary sizes while preserving the spatial
structure. Different kinds of methods are proposed to solve
the scene retargeting problem. One kind of method manipu-
lates scenes on the ‘inner level’ by adding or removing the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-023-03167-4&domain=pdf
http://orcid.org/0000-0003-1105-8542

6320 R. Fan et al.

basic element of scenes [1, 2]. While the other kind manipu-
lates scenes on the ‘outer level’ by adjusting the furniture size
and the distance between them [3, 4]. Another relevant prob-
lem is the scene synthesis problemwhich aims at designing a
new scene, and a series of algorithms are proposed to synthe-
size a virtual scene from scratch[5–7]. The main difference
between scene layout synthesis, scene retargeting, and scene
synthesis is that we have a real scene as input, which will
provide the passive haptic for the synthesized virtual scenes.
Take a virtual sightseeing room for example, the scene layout
synthesis tries to rearrange the layout of the virtual furniture
in the virtual scene based on the input real conference room
to provide the user with a visual and tactile experience. The
scene retargeting tries to resize the virtual furniture and the
distance between them while maintaining the spatial struc-
ture according to the input scene target dimensions. The scene
synthesis tries to generate a completely new virtual scene,
only the category of furniture in the newly generated scene
is the same as the input scene. The size of the newly gener-
ated furniture and the relationships between the furniture are
independent of the input scene.

In this paper, we propose a real-scene-constrained virtual
scene layout synthesis method to synthesize the layout of the
virtual furniture in the new virtual scene. The layout main-
tains the relationship between furniture in the input virtual
scene as much as possible, and when the user explores the
synthesized virtual scene, the input real scene provides the
user with as much passive haptic as possible. We focus on

the main furniture in the scene without considering some
tiny decorations. There are 3 main steps in our scene layout
synthesis process: scene matching, matched furniture layout
generating, and unmatched furniture layout generating. First,
we introduce a deep scene matching network to predict the
matching relationship between real furniture and virtual fur-
niture. Then, we propose a layout parameters optimization
algorithm to arrange the matched virtual furniture into the
new virtual scene, i.e., predicting suitable layouts to match
the real scene. At last, we propose a deep scene generating
network to arrange the unmatched virtual furniture in the
new virtual scene. We evaluate the quality of our method to
synthesize scenes of different types and sizes. The results
show our method increases the matching accuracy by 15%
and improves the location accuracy by a factor of 5.71 in
total, compared with the heuristic rules-based method [8].
We also design a user study to evaluate the interactivity and
fidelity of our method. Compared to the manual method and
the heuristic rules-based method, our method has a signif-
icant improvement in touchable time and class correctness.
Figure1 shows the results of scene layout synthesis using our
method with a real conference room and a virtual sightseeing
room as input.

In summary, our contributions are as follows:
1. A pipeline to synthesize the layout of the virtual fur-

niture in a new virtual scene according to the input virtual
furniture and its layout within the constraints of the input real
furniture and its layout.

Fig. 1 Mixed reality offers users a more creative and immersive expe-
rience. Given a virtual sightseeing room (top row), the user wears an
augmented reality head-mounted display in the conference room (bot-
tom row), and the virtual scene and the real scene are mixed (middle
row). The user can observe the virtual-real fusion scene (left column)
through the HMD and touch the table and chairs in front of the user

(middle column). The layouts of the furniture in the virtual scene are
synthesized (right column), which not only maintains the relationship
between furniture in the input virtual scene as much as possible but
also provides the user with as much passive haptic as possible when he
explores the synthesized virtual scene

123

Real-scene-constrained virtual scene layout... 6321

2. A deep scene matching network to predict the matching
relationship between real furniture and virtual furniture.

3. A deep scene generating network to arrange the
unmatched virtual furniture in the new virtual scene.

2 Related work

2.1 Scene retargeting

Retargeting is an essential topic in computer graphics (CG)
and computer vision (CV)[9]. In CV, image retargeting is
defined as adjusting input images into arbitrary sizes and
simultaneously while preserving the salient regions of the
input images[10]. Similarly, 3D scene retargeting is defined
as adjusting input scenes into arbitrary sizes and simulta-
neously while preserving the spatial structure of the input
scenes[1]. Many methods have been proposed to retarget a
3D scene, and they can be divided into two categories, one
kindmanipulates the scene on the ‘inner level’while the other
manipulates on the ‘outer level’. The ‘inner level’ method
retargets the scene by adding or removing the basic compo-
nent of the scene or the object. [1] first decomposes the input
scene into a collection of components, then the constraint
relationships between components are built, and retargeting
is implied by inserting or removing these components with-
out violating the constraints. Similarly, [2] first decomposes
the input irregular 3D architecture into a set of sequences,
and then retargets the architecture by replication and scal-
ing the basic structural elements of the architecture while
preserving their structures. The ‘outer level’ method retar-
gets the scene by adjusting the objects’ size and the distance
between them. [3] constructs a perception-aware function
to optimize the size, location of the objects, and distance
between them with preserving structural/geometric proper-
ties. The redirecting problem inVRcan be viewed as a variant
of the scene retargeting problem, which tries to retarget a big
virtual scene into a small real scene. A series of methods
are proposed to solve this problem [4, 11], they either intro-
duce geometric distortions to virtual objects or restructure the
scene. These methods also belong to the ’outer level’ meth-
ods of scene retargeting problem. However, there are many
differences between the scene layout synthesis problem and
the scene retargeting problem. First, no furniture in the target
scene is allowed to be discarded in the scene layout synthesis
problem. Second, in the scene layout synthesis problem, the
source scene and the target scene differ not only in size but
also in structure. Third, the scene layout synthesis problem
requires making full use of the furniture in the real scene to
maximize interactivity.

2.2 Scene synthesis

Scene synthesis is one of the basic tasks in CG, and there is a
long line ofwork to solve this problem.Early studies first con-
struct rule-based constraints based on prior knowledge, then
expressed these constraints as cost functions, and synthe-
size the scene by optimizing the cost functions [6, 7, 12–15].
With the development of deep learning, learning-basedmeth-
ods become popular and get great performance[16–18]. [19]
synthesizes the scene iteratively. It first represents the scene
as a multiple channels top-down view image, then uses 4 dif-
ferent CNNs to predict ‘whether’, ‘category’, ‘location’, and
‘instance’, respectively, and synthesize the scene based on
the predicted results. [5] uses a two-stage pipeline to synthe-
size scenes. It first represents the scene as a graph, then uses
GNN to predict a series of actions which is used to guide the
synthesis of the graph. With the synthesized graph, the scene
is constructed by instantiating the node in the graph as fur-
niture. [20] uses a variational autoencoder to synthesize the
scene. [21] used the long-term dependencies to generate the
dynamic scene graphs. Different from [5] and [19], [20] rep-
resents the scene as a hierarchy based on the spatial relations
of the furniture in the scene. In the scene synthesis problem,
the furniture to be synthesized is determined by the already
synthesized scene. While in the scene layout synthesis prob-
lem, the furniture to be synthesized is deterministic. Besides,
for the scene synthesis problem, the synthesizer only needs to
care about the information of the already synthesized scene.
While in the scene layout synthesis problem, the synthesis
needs to pay attention to not only the information of the
already synthesized scene but also the information of the tar-
get scene. Thus, the scene layout synthesis problem is more
complicated than the scene synthesis problem.

2.3 Graphmatching

The problem of graph matching under node and pairwise
constraints is fundamental in areas as diverse as combina-
torial optimization, machine learning, CG, and CV [22].
Graph matching refers to establishing node correspondences
between two or multiple graphs, which have been long-
studied. The graph matching problem can be divided into
two general categories: exact matching and inexact match-
ing [23]. Due to the graph matching can be formulated as
a quadratic assignment, being well-known NP-complete, it
is hard to predict the optimal solution[24]. Different meth-
ods are introduced to get the approximate solution of the
graph matching problem [25–30]. With the development of
deep learning, learning-based methods are widely used in
various fields [31–35]. In CV, a lot of methods are applied

123

6322 R. Fan et al.

for graph matching on images. [22] uses a CNN to extract
node features and constructs multiple different matrix lay-
ers to predict the matching result. [36] replaces the CNN
used in [22] with GNN to better structural and geometric
feature extraction. GNNs are deep learning-based methods
that operate on the graph domain, and due to their convinc-
ing performance, GNNs have become awidely applied graph
analysis method recently [37–46]. [47] proposed an accurate
stereo matching method based on color segments and edges.
In this paper, we combine GNNswith Sinkhorn Network[48]
to predict the matching relationship between the furniture in
the source scene and the target scene. The goal of this paper is
not to propose a new learning-based graphmatchingmethod,
but to propose a new scene graph matching network to solve
the scene matching problem, which is a sub-problem of the
scene layout synthesis problem.

3 Method

3.1 Pipeline

We denote the scene as S and the furniture in the scene as F .
The subscript v denotes virtual, the subscript r denotes real,
the superscriptm denotes matched, the superscript u denotes
unmatched, and the superscript ′ denotes newly synthesized.
Our goal is to synthesize a new virtual scene Sv

′
while the

layout of Sv
′
maintains a similar relationship between furni-

ture as in the input virtual scene Sv. At the same time, it also

needs to maintain a similar relationship between furniture as
in the input real scene Sr , which will help the users get the
passive haptic from Sr when wandering in Sv

′
.

As shown in Fig. 2, there are 3 main steps in our scene
layout synthesis process: (1) scene matching; (2) matched
furniture layout generating; (3) unmatched furniture layout
generating. First, we introduce the deep scene matching net-
work to predict thematchingmatrixM between real furniture
Fr in Sr and virtual furniture Fv in Sv. Then we propose
a layout parameters optimization algorithm to arrange the
matched virtual furniture Fm

v into Sv
′
, i.e., predicting suit-

able layouts of Fm
v to match the corresponding real furniture

Fm
r . At last, we propose a deep scene generating network

to arrange the unmatched virtual furniture Fu
v in Sv

′
, i.e.,

predicting suitable layouts of Fu
v in Sv

′
. In summary, we

synthesize the layout of the furniture in the virtual scene on
the ‘outer’ rather than the ‘inner’ level, i.e., adjusting the
furniture’s size and center. We do not insert or remove the
components of furniture. We begin by dividing the furniture
intomatched and unmatched (step 1), and then adjusting their
sizes and centers (steps 2 and 3).

In steps 1 and 2, the constraints that need to be consid-
ered are: (1) the matched Fm

v is similar to its corresponding
Fm
r , i.e., the category c (defined in Table 1) of the Fm

v and
that of the corresponding Fm

r is the same, the size s of the
Fm
v and that of the corresponding Fm

r is similar (±50%);
(2) the spatial and functional relationship (SFR) of matched
virtual furniture SFR(Fm

v) is similar to that of its correspond-
ing real furniture SFR(Fm

r). In step 3, the constraints that

Fig. 2 The pipeline of the real-scene-constrained virtual scene synthe-
sis method. Given the input virtual scene and the input real scene, we
first represent them as scene graphs and use the scenematchingmodel to
predict the matching relation between the virtual furniture and the real
furniture. Then, for the matched furniture, we use the matched furniture
generating model to synthesize the new layout of the matched furniture.

Next, for the unmatched furniture, we represent the input real scene as
scene projection and use the unmatched furniture generating model to
predict the heatmap of the unmatched furniture and synthesize the new
layout of the unmatched furniture. Finally, the synthesized matched and
unmatched furniture together form the synthesized virtual scene

123

Real-scene-constrained virtual scene layout... 6323

Table 1 Furniture category definition and corresponding interaction
type of different furniture

Category Bed Table Cabinet Chair Bedside
Table

Sofa

Inter-Type H-Inter H-Inter V-Inter H-Inter H-Inter H-Inter

The ‘H’ denotes ‘horizontal’, and the ‘V’ denotes ‘vertical’

need to be considered are: (3) the unmatched virtual fur-
niture Fu

v is resized and placed into Sv
′
according to Sr; (4)

the spatial and functional relationship relation of synthesized
unmatched virtual furniture SFR(Fu

v
′
) is similar to that of its

original virtual furniture SFR(Fu
v).

3.2 Scene representation

Before the scene matching and generating, we need to con-
struct the scene representation. Similar to the [5], we use a
combined representation of scene graph and scene projec-
tion to represent the real scene and the virtual scene, which
can fully model the spatial and functional information of the
scenes. For the scene graph representation, we use a directed
graph to encode the scene, furniture, and room architecture,
such as walls and windows, are encoded as nodes, and spa-
tial and functional relationships are encoded as edges. For the
scene projection representation, we encode the scene using a
multi-channel top-down projection image. We use the scene
graph in step 1 and use the scene projection in steps 2 and 3.

3.2.1 Scene graph

Given a scenewith furniture and roomarchitecture, a directed
graph ς = (NF,NA,E) is constructed, where NF represents
the furniture node,NA represents the room architecture node,
and E represents the edge.

Furniture node Each furniture node NF represents one
furniture in the scene and is labeled with the furniture’s cate-
gory, size, orientation, and interaction type, such as touching
horizontally and vertically (Table 1). In each scene, we
choose a furniture node as the center node (e.g., bed in the
bedroom scene, the biggest table in the living room scene),
and use a Boolean value to mark the center node, 1 for the
center node and 0 for others.

Room architecture node The room architecture nodes
NA are used to represent walls, windows, and doors in the
scenes. Similar to the furniture node, these room architec-
ture nodes are labeled with category, size, and orientation.
The reason for constructing the room architecture node is
the relation between the furniture, and the room architecture
will influence the matching results.

Edge Edge represents the spatial and functional relation-
ships between two furniture nodes, or a furniture node and

a room architecture node. Different from previous work [5],
which constructs spatial edges from functional edges sep-
arately, we assign three attributes to each edge: function,
distance, and direction attributes.

The function attribute describes the semantic relationship,
which has 6 options: (1) wall, (2) window, (3) door, (4) chain,
(5) attach, and (6) center. Wall is selected on the edge from
a wall to its nearby furniture (e.g., a sofa in front of a wall);
window is selected on the edge from a window to its nearby
furniture (e.g., a chair in front of a window); door is selected
on the edge from a door to its nearby furniture (e.g., a cabinet
by the door); chain is chosen on the edge from one furniture
to another furniture nearby with the same category (e.g., a
series of sofas); attach is chosen the edge from a bigger fur-
niture (main-furniture in the attach-relationship) attached to
a smaller furniture (sub-furniture in the attach-relationship),
which includes the bed and the bedside table attached to it,
the table and the chair attached to it, the table and the sofa
attached to it; center is selected on the edges from the center
furniture to a furniture. The distance attribute has 3 options:
near, middle, and far. The direction attribute has 4 options:
left, right, front, and back.

In this paper, the scene graph of the virtual and real scenes
is generated manually. For each furniture, we represent it as
a node. We represent the wall, the window, and the door as
room architecture nodes. For each scene, it has four walls
(top, right, down, and left), multiple windows, and multiple
doors. We annotate the scene graph manually by marking the
edges between furniture and furniture, and the edges between
furniture and room architecture. For each edge, we choose
its start node and then the end node, the function attribute is
generated automatically based on the categories of the start
node and the end node. The distance attribute of the edge is
determined by the distance between the two furniture’s ori-
ented bounding boxes(OBB): if the distance is within 10%
of the largest diagonal of two furniture, the attribute is set as
near; else if the distance is within 30% of the largest diag-
onal of two furniture, the attribute is set as middle; else the
attribute is set as far. The direction attribute is defined in the
local coordinate frame of the edge start node.

3.2.2 Scene projection

Given a scene, a multi-channel top-down projection image
ρ = (V,D,C) is used to encode the scene, where V repre-
sents the view channels, D represents the depth channel, and
C represents the category channel.

View The view V is an RGB image rendered orthograph-
ically from the top of the scene, which contains the visual
appearance information of the indoor scene. R, G, and B
components are stored in the first 3 channels.

Depth The depth buffer D corresponding to the view is
stored in the fourth channel.

123

6324 R. Fan et al.

Category The categoryC is a multi-channel image corre-
sponding to the view and depth, whose pixel value is encoded
with the category of the projected furniture and room archi-
tecture.

In this paper, the scene projection of the virtual and real
scenes is generated manually. ForV, we first move the scene
to the center of a 6m × 6m region and then render the image
orthographically from the top of the scene, with setting the
resolution as 512 × 512. For D, we map the depth with d =
(4− height)/4, where height is the height of the furniture.

3.3 Scenematching

Inspired by [22, 36], we formulate the scene matching prob-
lemas a graphmatchingproblem.Thedifference betweenour
scene graph matching and the previous work is our method
uses GNNs to update the edge feature and propagate mes-
sages from edges and neighbor nodes in the embedding step
since the edge has some attributes in our scene graph, while
previous methods do not process the edge attributes.

Given the input virtual scene Sv and real scene Sr, we
represent them as scene graph ζv = (Nv,Ev,Gv,Hv) and
ζr = (Nr,Er,Gr,Hr). Nv and Nr denote the virtual and real
furniture, andEv andEr denote the edges. The topologyof the
graphs is encoded by node-edge incidence matrices Gv, Gr,
Hv, and Hr. If the cth edge begins at the i th virtual furniture
and ends at the j th virtual furniture, gvic = hvjc = 1. If the
cth edge begins at the i th real furniture and ends at the j th
real furniture, gric = hrjc = 1. Given the embedded feature
of virtual and real furniture Efv and Efr , we compute the
affinity matrix Am×n whose elements encode the node-to-
node affinity between Nr and Nv. The target of the scene
matching is to predict the matching matrix M so that the
sum of the node compatibility is maximized, M denotes the
one-to-one correspondence between Nv and Nr:

{
max
M

(tr(MTA))

M ∈ {0, 1}m×n,M1 ≤ 1,MT 1 ≤ 1
(1)

wherem and n are the number ofNv andNr. IfM is a one-to-
one mapping, then this optimization can be cast as a linear
matching problem, which can be efficiently optimized by
the Hungarian algorithm. As shown in Fig. 3, we use the
deep graph neural network to predict the feature of nodes.
Since the Hungarian algorithm is not differentiable, we use
the Sinkhorn operator to approximate the Hungarian algo-
rithm during training phase.

Algorithm 1 Scene Matching Algorithm

Input: the real scene graph ζr , the node feature fNr , the edge feature
fEr , and the virtual scene graph ζv , the node feature fNv , the edge
feature fEv ,.

Output: optimal matching matrixM
1: Efr=GNNs(ζr , fNr , fEr)
2: Efv=GNNs(ζv , fNv , fEv)
3: A = Affinity(Efr ,Efv)
4: if Training:
5: M = Sinkhorn(A)

6: else :
7: M = Hungarian(A)

Feature definition The node feature fN is defined as a
a × 1 vector, which concatenates: category (one-hot encod-
ing, c×1 for c categories), size(2×1), orientation(2×1) and
interaction type(one-hot encoding, 2 × 1). The edge feature
fE is defined as a b × 1 vector, which concatenates func-
tion attribute (one-hot encoding, 6 × 1), distance (one-hot
encoding, 3 × 1) and direction (one-hot encoding, 4 × 1).

Feature embeddingWeuse an embeddingmodel to prop-
agate and aggregate the message encoded in edges and room
architecture nodes into the node feature (Algorithm 1 line
1–2). The embedding model takes fN and fE as input and
outputs the embedded furniture node featureEf . The embed-
ding model consists of two parts: each part is a GNNmodule
with L layers. For each layer, the GNNmodule has the same
architecture. For l ∈ [1, L] layer, the feature is propagated,
aggregated, and updated as follows:

Fig. 3 Given the virtual scene graph and the real scene graph, we first
use the embedding model(GNNs, Eq.2) to embed the node feature.
Then, we use the affinity model(fully connected layers, Eq.3) the eval-
uate the affinity of the nodes between the virtual and real scene graphs.

Finally, we use the Sinkhorn layer(Eq.4) to predict the matching rela-
tion between the nodes in the virtual scene graph and the nodes in the
real scene graph

123

Real-scene-constrained virtual scene layout... 6325

UpdateEdge : fEyx
l = MLP_E(fNx

l−1, f
Ny
l−1, f

Eyx
l−1)

Message : myx
l = MLP_M(fNx

l−1, f
Ny
l−1, f

Eyx
l)

AggregateMessage : mx
l = ∑

y∈Neighbour(x)
myx

l

UpdateNode : fNx
l = MLP_U(mx

l)

(2)

For node Nx , which could be any furniture node or room
architecture node, it has neighbor nodes Ny (y ∈ Neighbour
(x)), linked with edges Exy . We first use an mlp MLPE to
update the edge feature fEyx (line 1 in Eq.2). Then, we calcu-
late the message myx propagated from each neighbor node
with an MLP MLPM (line 2). Next, we aggregate all the
messagemx with a summation function (line 3). Finally, we
update the node feature fNx with an mlpMLPU (line 4). For
l = 0, fE0 = fE , fN0 = fN . For l = L , the embedded furniture
node feature Ef = fNL .

Affinity evaluationWith embeddednode featuresEf r and
Efv,we apply an affinitymodel to calculate the affinitymatrix
Am×n (Algorithm 1 line 3).

Ai, j = Affinity(Efr i ,Efv j) (3)

where Ef ri is the embedded node feature for node NF
r i , i ∈

[0,m−1], Efv j is the embedded node feature for nodeNF
v j ,

j ∈ [0, n − 1]. The Affinity is the affinity model, and we
adopt fully connected layers as the affinity model.

Sinkhorn layer Since the Hungarian algorithm is not
differentiable, the Sinkhorn operator can be seen as an
approximation to the Hungarian algorithm, and it is fully dif-
ferentiable due to that onlymatrixmultiplication and division
are taken. Thus, we use a Sinkhorn layer [29] to solve Eq.1
during training (Algorithm 1 line 4–5).

M0 = exp(A/τ)

Mk = Norc(Norl(Mk−1))

M∗ ≈ lim
k→∞(Mk)

(4)

where τ is a predefined small positive real number, Norc and
Norl are the row-wise and column-wise normalization for
the k − th iteration. It can be proved that the best matching
relationship M∗is obtained when M∗ ≈ limk→∞(Mk) [29].
The Sinkhorn operator can’t be realized since the limitation
operation to k, an alternative way is to replace limk→∞ with
a big positive integer K so that MK can converge toM∗.

LossGiven the ground truth matching relationshipM and
the predicted matching relationship M∗, we compute the
cross-entropy loss between them.

Loss=−
∑
i, j

Mi, j logM
∗
i, j + (1 − Mi, j) log(1 − logM∗

i, j)

(5)

3.4 Matched furniture layout generating

Given the matching matrix M, Fv/r can be divided into
matched virtual/real furniture Fm

v/r and unmatched vir-
tual/real furniture Fu

v/r . In this section, we synthesize the
layout of the matched virtual furniture Fm

v constrained by
Fm
r , i.e., predicting suitable layouts of Fm

v to match the cor-
responding real furniture Fm

r . One of the simplest ways is
to set the new layout of Fm

v to be the same as Fm
r , while it

may be unsuitable in some cases. As shown in Fig. 4, we try
to synthesize the layout of the virtual red cabinet according
to the real brown cabinet. Due to the red and brown cabi-
nets having different aspect ratios, scaling the virtual cabinet
directly may reduce the user’s perception and immersion of
the original virtual scene. We propose a layout parameters
optimization algorithm (Algorithm 2) to synthesize the new
layout of virtual furniture which not only matches the size of
the real furniture but also ensures the user’s passive haptics.
The layout parameters optimization algorithm only consid-
ers the layout and category of the furniture and does not take
the lighting conditions and the deterioration of the furniture
into account.

Algorithm 2 Layout Parameters Optimization Algorithm
Input: Fm

v ’s sizeSizemv , the correspondentmatched real furniture’s size
Sizemr and center Ctmr , the center of the real scene CTRr

Output: Fm
v

′
’s center Ctmv

′
and size Sizemv

′

1: λ, ω, η = ParamPredict(Sizemv ,Sizemr ,Ctmr ,CTRr)

2: Cormr = FindCorner(λ,Ctmr ,Sizemr)
3: Cormv = FindCorner(λ,Ctmr ,Sizemv)
4: 	 = Cormv -Cor

m
r

5: Ctmv
′
= Ctmr +	

6: R = Sizemr ./Sizemv
7: if ω:
8: if η:
9: R = [max(R),max(R)]
10: else:
11: R = [min(R),min(R)]
12: Sizemv

′
= Sizemv ·R

13: Ctmv
′
= Ctmv

′
+ Sizemv

′ ·(R − 1)/2

The layout parameters optimization algorithm takes the
size Sizemv of Fm

v , the size Sizemr and the center Ctmr of Fm
r ,

the center CTRr of the real scene as inputs, and outputs the
center Ctmv

′
and size Sizemv

′
of the synthesized virtual furni-

ture Fm
v

′
.

We first use the ParamPredict algorithm to predict 3
parameters λ, ω and η to control the layout optimization
process (line 1). λ is a 4 × 1 vector that determines which
corner of Fm

r and Fm
v

′
are aligned. ω is a Boolean value that

determines whether Fm
v

′
is scaled with keeping the original

aspect ratio. η is a Boolean value that determines whether
Fm
v

′
is allowed to be out of the space occupied by Fm

r . Then,
we obtain the coordinates of the aligned corners of Fm

r and

123

6326 R. Fan et al.

Fig. 4 Based on the matching relation, the red cabinet is matched to the
brown cabinet in the real scene (a). A straightforward method is to scale
the red cabinet directly and move the scaled red cabinet to the location
of the brown cabinet (b). However, this will change the aspect ratio of
the red cabinet and reduce the user’s perception and immersion of the
virtual scene. Our method allows the virtual furniture to not match the

size of the real furniture while ensuring the user’s passive haptics. For
the red cabinet, we first scale up it while maintaining the aspect ratio,
and then move the red cabinet to the location of the brown cabinet by
aligning the red cabinet and brown cabinet on their human-facing sides
(c)

Fm
v

′
(lines 2–3) and translate Fm

v
′
with 	 (lines 4–5). Next,

we calculate the original scaling ratio R (2 × 1) of Fm
v

′
and

Fm
r (line 6). If Fm

v
′
has to be scaled with keeping R (line 7)

and is allowed to be out of the space occupied by its cor-
respondent matched real furniture (line 8), R is set as the
maximum ratio in 2 directions (line 9). If Fm

v
′
has to be

scaled with keeping the aspect ratio and is not allowed to
be out of the space occupied by its correspondent matched
real furniture (line 10), R is set as the minimum ratio in 2
directions (line 11). If Fm

v
′
doesn’t need to be scaled with

keeping the aspect ratio, we keep R as the original. Finally,
we scale Fm

v
′
according to the aligned corner(line 12) and

update the center position of Fm
v

′
(line 13). As in Algorithm

2, we describe the furniture by its size and center, and we do
not consider light variance.

ParamPredict Parameters λ, ω and η control the adjust-
ment process, where ω is related to the category of the
furniture and λ and η are not.

For λ, we link the real furniture center Ctmr and the real
scene centerCTRr), and the vertex closest to this line of the 4
vertices of the rectangle vi is defined as the alignment corner.

⎧⎪⎨
⎪⎩
disi =min(

∣∣Ctmr vi ∣∣ , |CTRrvi | ,
∣∣Ctmr vi − Ctmr vi ·Ctmr CTRr

Ctmr CTRr ·Ctmr CTRr

·Ctmr CTRr
∣∣)

λ = argmin(dis1, dis2, dis3, dis4)

(6)

For ω, we set threshold values T for different categories
of furniture (Tbed = 0.1, Ttable = 0.1, Tcarbinet = 0.2,
Tchair = 0.1, Tbedside table = 0.075, Tsofa = 0.1). The thresh-
old T is determined by competent human perception. For
different furniture categories, people have different levels of
tolerance for imbalances in their aspect ratios. We test dif-
ferent categories of furniture and determine suitable T . If the
difference between the aspect ratio of two matched furniture

is smaller than the threshold value, ω is set as 1, else as 0.

ω = 1 if

∣∣∣∣Sizemv − Sizemr
Sizemr

∣∣∣∣ < T else 0 (7)

For η, if the furniture is located in the corner of the wall
(if this furniture is near two adjacent walls according to the
edges), η is set as 1, else as 0.

3.5 Unmatched furniture layout generating

In this section, we synthesize the layout of the unmatched
virtual furniture Fu

v . Inspired by [5], we treat the unmatched
furniture layout generating problem as a prediction prob-
lem, i.e., predicting the location probability distribution of
the Fu

v in S
′
v (Fig. 5). The location probability distribution

P(Ct|Fu
v,S

′
v) is conditional probability distribution, with

∑
Ct∈AllPosition

P(Ct|Fu
v, S

′
v) = 1 (8)

The main difference between our method and the previous
work [5] is that: our unmatched furniture layout generating
model is a uniform model for all furniture categories and
takes the category and size of Fu

v as inputs. While the pre-
vious work uses different models for different categories of
furniture. This is because we arrange the Fu

v into S
′
v with

keeping its original size to maximize the perception and
immersion, while previous work has no constraints on the
size of the furniture.

Input The input is the projection of the real scene which
encodes the spatial and functional information.

Output The output is a location probability distribution
map, i.e., a heatmap, which is a one-channel image with the
same size as the input projection image, and each pixel of the
heatmap represents the probability that the furniture exists at
this pixel, and the sum of the probability is 1.

123

Real-scene-constrained virtual scene layout... 6327

Hourglass neural networkWeuse the hourglass network
[49] to extract the spatial and functional information and use
multiple prediction heads implied with CNNs to predict the
heatmap for Fu

v. The hourglass network first uses residual
and max pooling layers to process features down to a very
low resolution. At each max pooling step, the resolution of
the feature maps decreases by two. After reaching the low-
est resolution, the hourglass network begins to upsample and
combines the features across multiple scales. At each upsam-
pling layer, the resolution of feature maps increases by two.
After reaching the output resolution of the network, the pre-
diction head is applied to produce the heatmap.

FiLM Furthermore, the hourglass takes additional inputs,
i.e., the category and original size of the unmatched virtual
furniture. The additional inputs are injected into the net-
work via featurewise linear modulation (FiLM), a process
that applies a learned scale and shifts to the output of every
convolutional layer.

Loss Given the ground truth heatmap HMGT and the pre-
dicted heatmap HMPD , the loss is given by computing the
MSE loss of two images:

Loss =
∑
p∈HM

‖HMGT(p) − HMPD(p)‖2 (9)

Location, orientation, and size Given the predicted
heatmap, we consider the pixel with the maximum proba-
bility as the precise center location of Fu

v
′
. For a properly

synthesized scene, the furniture should be set with its front
direction pointing to the center of the scene. With this princi-
ple, we determine the orientation of Fu

v. For the size, we try
to keep its original size. In the case where there is not enough
space for the synthesized furniture, we appropriately shrink
the synthesized furniture to arrange them in the empty space.

4 Dataset construction

4.1 Indoor Scene Layout Synthesis Dataset

In this paper, we introduce a new dataset, especially for the
indoor scene layout synthesis problem. This dataset is con-
structed based on the 3D-FRONT dataset [50] which is a
large-scale dataset of synthetic indoor scenes. To build the
Indoor Scene Layout Synthesis Dataset, we carefully select
indoor scenes from the 3D-FRONT dataset of different scene
types, different design styles, and different decorative styles.
The Indoor Scene Layout Synthesis Dataset contains 100 liv-
ing room scenes, 100 bedroom scenes, 100 kitchen scenes,
and 100 office scenes, and A2

100 = 9900 scene layout synthe-
sis results between living room scenes, A2

100 = 9900 scene
layout synthesis results between bedroom scenes, A2

100 =
9900 scene layout synthesis results between kitchen scenes,

and A2
100 = 9900 scene layout synthesis results between

office scenes. For each scene, we remove uncommon furni-
ture. For the bedroom, we only keep the beds, the table, the
cabinet, the chair, and the bedside table in them. For the liv-
ing room, we only keep the table, the cabinet, the chair, and
the sofa in them. For the kitchen, we only keep the table, the
cabinet and the chair in them. For the office, we only keep
the table, the cabinet, the chair, and the sofa in them. These
scenes are represented as a flat list of furniture(with category,
geometry, location, size, and orientation), and they contain
no spatial or functional information between furniture.

4.2 Scenematching annotating

We use a two-step scene matching method to annotate the
training data. First, a brute force score-based algorithm is
used to initialize the matching matrix M, and then M is
refined manually.

In the brute force score-based algorithm, given two scene
graphs ς1 with m furniture NF

1 i with i ∈ [0,m − 1] and ς2
with n furniture NF

2 j with j ∈ [0, n − 1], we compute the

matching score for each node pair NodePairt = [NF
1 i ,N

F
2 j]

with Eq.10.

Score = NodeScore + WallScore + WindowScore

+ DoorScore + AttachScore + ChainScore + CenterScore

(10)

whereNodeScore represents the furniture affinity between
the two nodes in the pair, which is initialized with 0. If two
nodes have the same category, a predefined category score
Scorec is added into NodeScore; if two nodes have a sim-
ilar size ±50%, a predefined category size Scores is added
into NodeScore if two nodes have the same interaction type,
a predefined interaction score Scorei is added into Node-
Score. In our implementation, Scorec, Scores , and Scorei
are set as 10,5,3 because of the importance of the differ-
ent node attributes. WallScore represents the affinity of the
furniture-wall relation of two nodes, which is also initialized
with 0. If the furniture-wall relations of two nodes are the
same, i.e., both nodes have edges whose functional attribute
is Wall and distance attribute is near, WallScore is set to a
predefined wall score. doorScore and windowScore are set
as the same as WallScore. attachScore represents the affinity
of the attach-relation of two nodes. If the attach-relations of
two nodes are the same, attachScore is set to a predefined
attach score. chainScore and centerScore are set as the same
as attachScore. In our implementation, the predefined wall,
door, window, attach, chain, and center scores are set as 2, 2,
2, 5, 5, 1. We enumerate all possible matching matrices M,
sum the matching scores of the node pairs with 1 in M, get

123

6328 R. Fan et al.

Fig. 5 Given the scene
projection of the input real scene
and the unmatched virtual
furniture, the hourglass network
is implied to encode the spatial
and functional information of
the scene, and the semantic
information of the unmatched
virtual furniture is injected into
the hourglass network via FiLM

128 256 128

6
4

2

3 64 128

3
2

2

6
4

2

128

256

1
6

2

256

256 512

256 512 128128

64 1

FiLM

2

1

6
4

2

Hourglass Network

Fig. 6 Examples of manually
adjusting matching and
generating results during dataset
annotation

(a) (b) (c) (d)

Virtual 1

Real 1

Virtual 1

Real 1

Virtual 2

Real 2

Virtual 2

Real 2

the score of M, and select theM corresponding to the highest
score as M∗.

Second, we adjust M∗ manually. Here are 2 examples to
demonstrate the manual adjusting. As shown in Fig. 6, in
virtual scene 1, there are two cabinets, while there is only 1
cabinet in the real scene. Based on the brute force score-based
algorithm, the red virtual cabinet will match the real cabinet
because these two cabinets have the same size and are both
close to a wall (a). While we try to match the virtual furniture
located in the corner of thewalls with the real furniturewhich
is also located in the corner of thewalls duringmanual adjust-
ing. Thus, we manually adjusted the matching relationship
and match the orange virtual cabinet with the real cabinet
(b). In virtual scene 2, there are two tables surrounded by
different numbers of chairs, while there is only 1 table in the
real scene. Based on the brute force score-based algorithm,
the light blue virtual table will match the real table because
these two tables have the same size and are both surrounded
by chairs (c), while we try to match virtual furniture with real
furniture that has a similar number of sub-furniture during
manual adjusting. Thus, we manually adjusted the matching
relationship and match the deep blue virtual table with the
real table (d). The lighting conditions have no effect on the
matching results.

4.3 Unmatched furniture layout generating
annotating

To annotate the location probability distributionmap for each
unmatched furniture of the training data, we use a two-step
unmatched generating method. First, we use a grid-based

algorithm to arrange unmatched furniture Fu
1 in scene one

S1 to scene two S2. The inputs are scene graph ς1 of S1, node
NF
1 which denotes Fu

1 , and scene graph ς2 of S2. The output
is the best center position Ct∗ of Fu

1 . We construct a 64× 64
uniform grid on a 6m × 6m floor and place S2 at the center
of the floor. For each cell center of the grid Pos, if Pos is
inside S2 and empty, we move Fu

1 to Pos and determine the
size and orientation. We update ς2 by adding Fu

1 as node
NFu

2 into ς2, and adding edges to link NFu
2 with all other

nodes. Then, we calculate node affinity Score between NFu

1
and NFu

2 as in Eq.10. At last, we obtain Ct∗ of Fu
1 with the

largest score.
Second, we adjust Ct∗manually. Here are 2 examples to

demonstrate the manual adjusting. As shown in Fig. 6, in
virtual scene 1, the unmatched red virtual cabinet will be
generated at the location of the yellow rectangle in the real
scene according to the grid-based algorithm. However, we
try to maintain the relative spatial relationship between the
matched and unmatched furniture during manual adjusting.
Thus, we manually adjusted the generating result and place
the red virtual cabinet at the location of the red rectangle
in the real scene (b). In virtual scene 2, there are two more
virtual chairs surrounding the deep blue virtual table than
there are real chairs surrounding the real table. Thus, these
2 chairs needed to be generated. Based on the grid-based
algorithm, these 2 chairs will be generated at the location
of the gray rectangles in the real scene. However, for the
sub-furniture surrounding a main-furniture, we try to gen-
erate them symmetrically while maintaining their size and
the spatial relationship between them. Thus, we manually

123

Real-scene-constrained virtual scene layout... 6329

adjusted the generating result and place these 2 chairs at the
location of the green rectangles in the real scene (d).

After we get CT ∗, the ground truth map of the location
probability distribution is given by two-dimensional Gaus-
sian distribution:

HT64×64(x, y) = 1

2πσ1σ2
exp

(
−1

2

[(
x − Ct∗[0]

σ1

)2

+
(
y − Ct∗[1]

σ2

)2
])

(11)

where σ1 and σ2 are set as 2 in our implementation. The
lighting conditions have no effect on the generating results.

5 Experiment

After constructing the dataset, we train our models on this
dataset and compare the quality of our method with the
heuristic rules-based method [8] on this dataset.

5.1 Training

5.1.1 Deep scenematching network

TheGNN architecture is implemented with PYG, the affinity
layer and Sinkhorn layer is implemented with Pytorch. We
train the deep scene matching network with cross-entropy
loss using SGD for optimization with the learning rate ini-
tially set as 0.001 and divided by 10 after 1000 iterations.
The batch contains 16 samples per iteration which are sam-
pled randomly. The hyperparameters L , τ and ε are set to 10,
1.0 and 1e− 4. Since bedrooms, living rooms, kitchens, and
offices have different spatial structures and different types
of furniture, four separate models are trained for each scene
category.

5.1.2 Deep scene generating network

The whole network is implemented with Pytorch. We train
the Deep Scene Generating Network with MSE loss using
SGD for optimization with the learning rate initially set as
0.001 and divided by 10 after 10000 iterations. The batch
contains 8 samples per iterationwhich are sampled randomly.
Similarly, four separate models are trained for each scene
category.

5.2 Metric

We quantity the quality of our scene layout synthesis method
with 2 metrics: matching accuracy for virtual and real scene
graphs, and location accuracy for unmatched furniture.

Matching accuracy (MA) For each furniture Fv in the
virtual scene,we get its correspondentmatching vectorMpred

i

from the predicted matching matrix Mpred and Mgt
i from

ground truth matching matrix Mgt, where i is the index of
this furniture. We take a scalar product on these two vectors
and obtain the matching value mai with Eq. 12.

mai = Mpred
i

T · Mgt
i (12)

Thenwe compute thematching accuracy with Eq. 13 accord-
ing to the number m of Fv.

MA =
∑
i

mai/m (13)

Location accuracy (LA) For each unmatched virtual fur-
niture Fu

v i , we obtain the predicted location Locpredi and the

ground truth Locgti , and then calculate location accuracy with
Eq. 14 by computing the inverse of the average Euclidean
distance of all pairs.

LA = q/
∑
i

(∥∥∥Locipred − Loci
gt
∥∥∥
2

)
(14)

In order to evaluate our method more finely, we not only
compute the abovemetrics for all furniture in thewhole scene
MAtotal, and LAtotal, but also compute the above metrics sep-
arately for each category of furniture, such as MAtable, and
LAtable.

5.3 Results

We conduct experiments on the Indoor Scene Layout Syn-
thesis Dataset to evaluate the quality of our method. The
quantitative results are shown in Table 2 and 3.

5.3.1 Matching accuracy

For the bedroom, the deep scene matching network can pre-
dict the matching relationship precisely and achieve 92%
accuracy in total. For different kinds of furniture in the
bedroom, the deep scene matching network predicts the
matching relationshipwith different accuracy. For beds, there
are usually only one or two beds in the scene, thus it is easy
to predict the matching relationship. For bedside tables, due
to their strong correlation with beds, it is also easy to pro-
cess. For tables and cabinets, their sizes change a lot, thus
the accuracy is relatively low. For chairs, there are too many
kinds of chairs, and they are randomly arranged in the bed-
room. For the living room, the deep scene matching network
can predict the matching relationship precisely and achieve
96% accuracy in total. For sofas and tables, both have strong
semantic character and the sizes of them in the living room

123

6330 R. Fan et al.

Table 2 Comparison of MA values with bedroom, living room, kitchen, and office scene by using our method and heuristic rules-based method

Scene Method MAbed MAtable MAcabinet MAchair MAbedside table MAsofa MAtotal

Bedroom Ours 1 0.93 0.79 0.82 0.91 / 0.92

Heu 0.91 0.82 0.71 0.68 0.88 / 0.83

Living room Our / 0.97 0.89 0.92 / 0.98 0.96

Heu / 0.86 0.72 0.65 / 0.89 0.75

Kitchen Our / 0.96 0.81 0.89 / / 0.88

Heu / 0.89 0.69 0.72 / / 0.71

Office Our / 0.93 0.81 0.79 / 0.96 0.92

Heu / 0.84 0.77 0.69 / 0.88 0.79

Table 3 Comparison of L A
values with bedroom, living
room, kitchen, and office scene
by using our method and
heuristic rules-based method

Scene Method LAbed LAtable LAcabinet LAchair LAbedside table LAsofa LAtotal

Bedroom Ours 1.89 9.10 8.33 10.50 13.12 / 8.09

Heu 0.81 1.10 1.18 1.92 4.01 / 1.08

Living room Our / 7.68 7.14 13.50 / 7.69 5.26

Heu / 1.12 1.19 1.81 / 1.07 1.26

Kitchen Our / 6.08 6.91 10.21 / / 7.36

Heu / 1.23 2.33 3.25 / / 2.47

Office Our / 7.69 6.77 9.98 / 6.91 7.41

Heu / 1.48 2.78 2.41 / 1.71 2.08

change relatively little, thus it is easy to predict. Different
from the bedroom, chairs in the living room usually have a
strong correlation with the table and are arranged in a row,
which makes it easier to process. For the kitchen, the deep
scene matching network can predict the matching relation-
ship precisely and achieve 88% accuracy in total. For tables,
there are only one or two tables in the kitchen, thus it is easy
to match. For cabinets and chairs, the number of cabinets
and chairs varies widely from one kitchen scene to another,
making it difficult to predict the correct matching relation-
ship. For the office, the deep scene matching network can
predict the matching relationship precisely and achieve 92%
accuracy in total. Similar to the kitchen and living room, the
table and sofa are relatively easy to predict thematching rela-
tionship, while the cabinet and chair are harder to predict the
matching relationship.

5.3.2 Location accuracy

For the bedroom, the deep scene generating network can pre-
dict the location of the unmatched furniture precisely and the
location accuracy is 8.09 in total. For different kinds of fur-
niture in the bedroom, the deep scene generating network
predicts the location with different accuracy. For beds, they
have the lowest location accuracy due to it is hard to arrange a
new bed in a bedroom that already has one. However, bedside
tables can be easily arranged in the source scene by putting
them at the side of beds. Tables and cabinets are usually

placed against a wall, which greatly reduces the difficulty of
generation. As for chairs, their location can be easily pre-
dicted by putting them near the tables. For the living room,
the deep scene generating network can predict the location of
the unmatched furniture precisely and the location accuracy
is 5.26 in total. For different kinds of furniture in the living
room, the deep scene generating network predicts the loca-
tion with different accuracy. For sofas, tables, and cabinets,
they have a strong spatial relationship with scene architec-
ture, which greatly constrains the scope of generation. For
the kitchen, the deep scene generating network can predict
the location of the unmatched furniture precisely and the
location accuracy is 7.36 in total. For chairs, they have a
strong spatial relationship with tables, making it easy to pre-
dict their location. For cabinets, although they are generally
placed against a wall, there is no certainty as to which wall
they will be placed against, so it is not easy to accurately
predict their location. For tables, it is much harder to arrange
a new table in a kitchen that already has one. For the office,
the deep scene generating network can predict the location
of the unmatched furniture precisely and the location accu-
racy is 7.41 in total. Similar to the kitchen and living room,
the table and sofa are relatively easy to predict the location,
while the cabinet and chair are harder to predict the location.

123

Real-scene-constrained virtual scene layout... 6331

5.4 Comparison

As shown in Table 2 and 3, for scene matching, our method
outperforms the heuristic rules-based method by 9% in bed-
room, by 21% in living room, by 17% in kitchen, and by 13%
in office. The reason is that the deep scene matching network
is flexible to deal with the structural information, while the
brute force score-based algorithm follows a fixed paradigm
for processing the structural information. For unmatched fur-
niture layout generating, our method has higher location
accuracy than the heuristic rules-based method in bedroom,
living room, kitchen, and office. The grid-based algorithm
determines the location of the unmatched furniture by calcu-
lating similarity, it only focuses on keeping the spatial and
functional relationship in the target scene and ignores the
fidelity of the source scene.

6 User study

We design a user study to evaluate the interactivity and
fidelity of our method.

6.1 User study design

6.1.1 Participants

We have recruited 24 participants, 20 males, and 4 females,
between 20 and 30 years old. All of them have hadMR expe-
rience before. Participants have normal and corrected vision,
and none report vision or balance disorders.

6.1.2 Hardware and software setup

Weused one set ofHololensHMDto construct our user study,
allowing participants to interact with the synthesized scene.
The HMD was connected to one workstation with a 3.6GHz
Intel(R) Core(TM) i7-9900KF CPU, 16GB of RAM, and
an NVIDIA GeForce GTX 3080 graphics card. The tracked
physical space hosting theVR applications is 12.6m× 8.1m.
We used Unity 2021.1 to implement our tasks. The virtual
environments were rendered at 60fps for each eye.

6.1.3 EC and CC

There are 2 control conditions (CC1 and CC2) and an experi-
mental condition(EC) in each scene. For EC, CC1, and CC2,
our method, manual method, and the heuristic rules-based
method are used to synthesize the virtual scenes, respectively.
In the manual furniture placement method, the person places
the furniture according to the input virtual scene and the real
scene, and the placement time of each furniture does not
exceed 30s.

6.1.4 Task

To fully assess the interactivity and realism of the synthe-
sized scenes, participants were asked to touch three synthetic
scenes (conference room, sightseeing room, concert hall), 20
times each, and to touch as much of the virtual furniture as
possible. Conference room is synthesized with inputs of real
and virtual conference rooms (Fig. 7a, b). For real scenes, we
first use the Kinect to scan the entire scene and get the point
clouds of the scene, then we use point clouds to reconstruct
the scene, and manually annotate the furniture and its lay-
out based on the reconstructed scene. The main difference
between the input real and virtual conferences room is the
number of chairs around the council board. Besides, there
are two opposite chairs near the council board in the virtual
scene, whereas there are none in the real scene.What’s more,
there are two sofas, one coffee table, and one armchair in the
virtual scene, which do not exist in the real scene. Sightsee-
ing room is synthesized with inputs of the real conference
room and virtual sightseeing room (Fig. 7a, c). In the vir-
tual scene, the scene has floor-to-ceiling windows on three
sides for sightseeing. Sofas and cabinets are placed against
another wall. A dining table with 8 chairs is arranged near
the main floor-to-ceiling window. One of the chairs is big-
ger than the others. Besides, there are two cabinets while no
sofa in the real scene, thus it is challenging to arrange the
bookshelf and sofa to keep their relationship. Concert hall
is synthesized with inputs of the real conference room and
virtual concert hall (Fig. 7a, d). The major structure of the
virtual scene is simple, it consists of one platform and 16
chairs, and the chairs are neatly placed in 3 rows. Though the
virtual scene is very simple, this task is quite challenging,
not only because there is no platform in the real scene, but
also because there is no space to arrange 3 rows of chairs.
What’s more, the chairs in the virtual scene keep a distance
from the platform, which imposes great restrictions on the
synthesis problem. Living room is synthesized with inputs
of the real conference room and virtual living room (Fig. 7a,
e). Different from other virtual scenes, the scene structure of
the virtual living room is quite different from that of the real
conference room. In the real scene, there is only one large
table surrounded by multiple chairs, whereas in the virtual
scene, there are two tables surrounded by chairs and sofas.
In addition, in the real scene, there are multiple chairs placed
in multiple rows along the wall, whereas in the virtual scene,
there is a separate chair placed in the corner.

6.1.5 Procedure

All participants are required to perform the three scenes
under all conditions. For each scene, the participants are first
required to observe the input real and virtual scenes for one
minute. Then the participants wear the Hololens and touch

123

6332 R. Fan et al.

Fig. 7 The real scene and virtual scenes used in the user study. The first
one is a real conference room (a), the second one is a virtual conference
room (b), the third one is a virtual sightseeing room (c), the fourth one
is a virtual concert hall (d), and the fifth one is a virtual living room
(e). Each scene is also described as a sketch denoting different kinds
of furniture as rectangles of different colors. The walls are represented
as dark grey rectangles, the doors are represented as light grey rectan-

gles, the windows are represented as light blue rectangles, the tables
are represented as deep blue rectangles, the chairs are represented as
green rectangles, the cabinets are represented as yellow rectangles, and
the sofas are represented as red rectangles. Each scene is also described
as a scene graph, where nodes of different colors indicate furniture and
edges indicate relationships between furniture

the synthesized scenes 20 times and evaluate the interactivity
and fidelity of the scene. The order of the synthesized scenes
is random. The minimum interval between the tasks is one
day, and the maximum interval is three days.

In each touch, participants first select and walk toward the
virtual furniture they are interested in, and then touch the
surface of the virtual furniture with their hands. When the
distance between the participant’s hand and the surface of the
virtual furniture is less than 3cm, the HMD sends an audible
alert signal to remind the user that the hand is already near
the surface of the virtual furniture. Subsequently, the user’s
handmoves near the surface of the virtual furniture, and if the
virtual furniture has corresponding real furniture, the user can
experience a sense of touch, and if there is no corresponding
real furniture, the user has no touch experience.Wedo not ask
the user to record a touch experience for each touch, because
such constant asking would interrupt the user’s immersion
experience. When we detect that the distance between the
participant’s hand and the surface of the virtual furniture is
less than 3cm, from the surface of that virtual furniture, a
ray of 5cm is emitted along the normal direction, and if the
ray intersects with the surface of the real furniture, then we
record a touch experience, otherwise no touch experience.
We encouraged participants to touch different parts of the
same virtual furniture, and touches with different parts of
the same furniture were recorded independently. After the
task, participants evaluate interactivity and fidelity through
subjective perception scores with a questionnaire.

6.1.6 Metric

We evaluate the interactivity of our methods with touchable
time and touch score and evaluate the fidelity with class cor-
rectness and experience score. (1) Touchable time: thismetric
calculates the time of successful touch in 20 touches. (2)
Class correctness: this metric calculates the number of times
the class of the virtual furniture matches the class of the cor-
responding real furniture in 20 touches. (3) Touch score: this
metric calculates the sum of the user’s scores for the first two
questions in the questionnaire. The first question is ‘How
well does the virtual furniture match the real furniture over-
all’. The second question is ‘How well does the interaction
surface between the real furniture and the virtual furniture
fit’. The participants then give a score for each question,
ranging from 0 to 2, 0 for bad, and 2 for good. If Ftgt

T was
unmatched, the score is 0. (4) Experience Score: this metric
calculates the sum of the user’s scores for the third, fourth,
and fifth questions in the questionnaire. The third and fourth
questions are ’How well does the synthesized furniture fit
with the real/virtual scene’. The fifth question is ’How well
does the size of the synthesized furniture match the original
size’. The scoring mechanism is the same as the one in touch
score.

6.1.7 Statistical analysis

For each metric, the values of EC are compared to CC1
and CC1, respectively. First, the normality of the data was

123

Real-scene-constrained virtual scene layout... 6333

assessed using the Shapiro–Wilk test. Then, the compari-
son was performed with a repeated-measures ANOVA if the
values showed anormal distribution.Whenvalues did not fol-
low a normal distribution, the comparison was made using a
Wilcoxon signed-rank test. In addition to the p-value of the
statistical test, we also estimate the size of the effect using
Cohen’s d.Thedvalues are translated to qualitative effect size
estimates of Huge (d > 2.0), Very Large (2.0 > d > 1.2),
Large (1.2 > d > 0.8), Medium (0.8 > d > 0.5), Small
(0.5 > d > 0.2), and Very Small (0.2 > d > 0.01).

6.2 Results and discussion

6.2.1 Touchable time

Table 4 gives the touchable time. The third column gives the
average and standard deviation, and the fourth column gives
the relative reduction from EC to CC. The fifth to seventh
columns provide statistical information about the difference
between the EC and CC. Statistical significance is indicated
by an asterisk.

Compared with all control conditions of all four scenes,
our method significantly improves the touchable time, and
the size ranges from ‘Large’ to ‘Huge’. The reason is that
the deep scene matching network not only takes fidelity into
account but also tries to maximize interactivity. Take confer-
ence room for example, the main difference between EC and
CC1 is the layout of the synthesized sofas. The sofas only
exist in the target scene, a straightforward way to synthesize
them is to generate them, which do not violate the rules of
semantic consistency. A smart way is to use the chairs to

represent them. Despite the lock sacrifice in fidelity, interac-
tivity is greatly improved. In sightseeing room and concert
hall, the EC and CC2 have the same matching relationship,
however, there are still differences between the interactivity
and fidelity. In CC2, participants only have 30s to synthesize
each virtual furniture, it is challenging to fit the real furniture
and the virtual furniture well. It may affect the success of the
interaction due to that we use the distance between the inter-
active points to evaluate the interactivity. While the layout
parameters optimization algorithm suitably fits the furniture.
In living room, we treat the tables in the real scene as two
separate tables of the same size, which makes it easy to deal
with virtual tables. Themain difference betweenEC andCC2
in living room is the layout of the virtual sofas. In CC2, the
virtual sofas are generated, while they are matched to the
real chairs in EC. The touchable time significantly improved
when the users interact with the sofas.

6.2.2 Class correctness

Table 5 gives the class correctness. Compared with all con-
trol conditions of all four scenes, our method significantly
improves the class correctness, and the size ranges from
‘large’ to ‘huge’. The reason is that our method is flexible
to deal with the spatial relation of furniture. Take conference
room for example, the main difference between EC and CC1
is the layout of the synthesized chairs. In the virtual scene,
the 12 chairs are neatly placed in 3 rows, while in the real
scene, it only has 8 chairs placed in 2 rows. To keep the spa-
tial consistency rules, 4 virtual chairs are generated in the
empty space in the real scene. However, in EC, our method

Table 4 Comparison of touchable time values with different scenes and conditions

Scene Condition Avg ± std. dev. (CC-EC) /CC p Cohen’s d Effect size

Conference room EC 6.51 ± 1.06

CC1 4.72 ± 1.24 0.38 < 0.001 1.56 Very large

CC2 5.50 ± 0.47 0.18 0.004 1.24 Very large

EC1 5.19 ± 0.52 0.25 < 0.001 1.56 Very large

EC2 5.49 ± 0.21 0.18 0.004 1.32 Very large

Sightseeing room EC 7.38± 1.09

CC1 5.36 ± 1.56 0.37 < 0.001 1.5 Very large

CC2 6.70 ± 0.09 0.10 0.004 0.84 Large

Concert hall EC 10.15± 0.21

CC1 5.67 ± 0.95 0.79 < 0.001 6.46 Huge

CC2 9.27 ± 0.60 0.091 < 0.001 1.94 Very large

EC1 6.43 ± 0.96 0.57 < 0.001 5.30 Huge

EC2 6.45 ± 0.84 0.14 0.002 0.95 Large

Living room EC 8.82± 0.98

CC1 8.29 ± 0.71 0.40 0.004 1.13 Large

CC2 5.77 ± 1.12 0.53 < 0.001 1.99 Very large

123

6334 R. Fan et al.

Table 5 Comparison of class correctness values with different scenes and conditions

Scene Condition Avg ± std. dev. (CC-EC) /CC p Cohen’s d Effect size

Conference room EC 5.52± 0.88

CC1 4.11 ± 1.05 0.34 < 0.001 1.69 Very large

CC2 4.74 ± 0.90 0.16 0.004 0.87 Large

EC1 4.79 ± 0.66 0.15 0.002 0.92 Large

EC2 4.34 ± 0.41 0.27 0.005 1.69 Very large

Sightseeing room EC 6.51 ± 0.60

CC1 4.88 ± 1.88 0.33 < 0.001 1.17 Large

CC2 6.04 ± 0.45 0.08 0.004 0.88 Large

Concert hall EC 10.03 ± 0.18

CC1 6.26 ± 0.49 0.60 < 0.001 10.17 Huge

CC2 9.39 ± 0.44 0.07 < 0.001 1.91 Very large

EC1 6.60 ± 0.73 0.52 < 0.001 6.42 Huge

EC2 5.68 ±0.51 0.76 < 0.001 1.48 Very large

Living room EC 7.65 ± 0.88

CC1 6.92 ± 0.60 0.11 0.005 1.01 Large

CC2 7.17 ± 0.99 0.07 < 0.001 1.71 Very large

breaks these 12 chairs into 3 groups and synthesized them
into correspondent real chairs. Although the spatial relation
is partly broken, the arrangement in EC is more reasonable.

6.2.3 Touch score

Table 6 gives the touch score. Compared with all control con-
ditions of all four scenes, our method significantly improves
the touch score, and the size ranges from ’large’ to ’huge’.
The reason is that the deep scene matching network rea-
sonably balances interactivity and fidelity. Take sightseeing
room for example, the main difference between our method
andCC1 is the layout of the sofa. Similar to conference room,
our method uses the chairs that existed in the real scene to
represent the sofa even if there is enough empty space to
generate it in the real scene. Although the fidelity will be
affected, the interactivity has been greatly improved. In CC2,
the human adopted the same strategy, which shows that the
deep scene matching network makes a good choice between
interactivity and fidelity.

6.2.4 Experience score

Table 7 gives the experience score. Comparedwith all control
methods of all four scenes, ourmethod significantly improves
the experience score, and the size ranges from ‘very large’ to
‘huge’. The reason is that the deep scene generating network
not only considers the spatial relationship between furniture
in the virtual scene but also the relationship in the real scene.
Take conference room for example, ourmethod generates the
virtual coffee table in front of a real chair. While in CC1, the

coffee table is synthesized in front of the cabinet. Although
the relationship between the coffee table and the sofas is kept,
the relationship between the synthesized coffee table and the
already existing cabinet is strange and unacceptable.

6.3 Ablation study

We design an ablation study to evaluate the performance of
the deep scene matching network and the deep scene gener-
ating network.

6.3.1 Ablation study design

The Participants, Hardware and software setup, Task, Met-
ric, Procedure and Statistical analysis are the same as Sect.
5.2.

EC. In EC1 and EC2, we replace the deep scene match-
ing network and the deep scene generating network with the
corresponding part of the heuristic rules-based algorithm,
respectively, and the other parts of EC1 and EC2 are the
same as EC.

6.3.2 Results and discussion

EC1 Our method significantly improves the touchable time,
class correctness, touch score, and experience score than
EC1, and the size ranges from ‘large’ to ‘huge’. For scene
matching, the core is how to maximize interactivity while
ensuring fidelity. For EC1, although it uses different kinds of
features to encode the spatial and functional information, it
may ignore the structural information.

123

Real-scene-constrained virtual scene layout... 6335

Table 6 Comparison of touch score values with different scenes and conditions

Scene Condition Avg ± std. dev. (CC-EC) /CC p Cohen’s d Effect size

Conference room EC 12.42 ± 1.07

CC1 9.13 ± 3.18 0.36 < 0.001 1.39 Very large

CC2 10.68 ± 2.47 0.16 0.003 0.91 Large

EC1 10.94 ± 1.55 0.13 < 0.001 1.11 Large

EC2 10.78 ± 1.05 0.15 0.005 1.54 Very large

Sightseeing room EC 15.16 ± 1.79

CC1 9.15 ± 3.28 0.66 < 0.001 2.28 Huge

CC2 13.61 ± 1.60 0.11 < 0.001 0.92 Large

Concert hall EC 19.16 ± 0.34

CC1 14.42 ± 1.35 0.33 < 0.001 4.83 Huge

CC2 16.70 ± 2.57 0.15 < 0.001 1.34 Very large

EC1 15.68 ±3.88 0.22 < 0.001 1.26 Very large

EC2 12.73 ± 1.04 0.19 < 0.001 1.66 Very large

Living room EC 17.17 ± 2.10

CC1 15.29 ± 1.17 0.12 0.002 1.00 Large

CC2 9.21 ± 2.11 0.86 0.005 1.45 Very large

Table 7 Comparison of experience score values with different scenes and conditions

Scene Condition Avg ± std. dev. (CC-EC) /CC p Cohen’s d Effect size

Conference room EC 23.93 ± 0.82

CC1 16.70 ± 2.08 0.43 < 0.001 4.58 Huge

CC2 20.42 ± 1.14 0.17 < 0.001 3.54 Huge

EC1 22.18 ± 0.64 0.08 < 0.001 2.39 Huge

EC2 17.25 ± 1.44 0.39 < 0.001 5.69 Huge

Sightseeing room EC 26.23 ± 1.66

CC1 20.72 ± 3.70 0.27 < 0.001 1.92 Very large

CC2 23.33 ± 0.97 0.12 < 0.001 2.14 Huge

Concert hall EC 30.08 ± 0.20

CC1 12.94 ±9.00 1.32 < 0.001 2.69 Huge

CC2 25.70 ± 2.57 0.17 < 0.001 2.40 Huge

EC1 15.64 ± 2.53 0.92 < 0.001 8.05 Huge

EC2 12.14 ± 2.67 1.48 < 0.001 1.84 Very large

Living room EC 27.16 ± 3.15

CC1 21.54 ± 2.76 0.26 0.004 0.91 Large

CC2 19.91 ± 3.96 0.36 0.003 0.94 Large

EC2 Our method significantly improves the touchable
time, class correctness, touch score, and experience score
than EC2, and the size ranges from ‘large’ to ‘huge’. For the
unmatched furniture layout generating problem, some ‘cre-
ativity’ is also needed to arrange virtual furniture in the real
scene. As shown in Fig. 8, due to that the sofas arematched to
the chairs against thewall, and there is a table in front of them,

thus it is unreasonable to arrange the table chair between the
two sofas. For EC2, it forces the coffee table synthesized into
this terrible layout to satisfy the original spatial relationship
with the sofas. However, our deep scene generating network
learns some different paradigms from the dataset and stag-
gers the coffee table and the table, which greatly improves
the fidelity.

123

6336 R. Fan et al.

Fig. 8 Qualitative results of the user study. The synthesized conference
room, sightseeing room, concert hall, and living room are demonstrated
in the first, second, third, and forth rows.We show the first and top views
of each synthesized scene under different conditions. As for synthesized
conference rooms, the main difference is the layout of the synthesized
table and sofas. As for synthesized sightseeing rooms, the main differ-
ence is the layout of the synthesized chairs. As for synthesized concert
halls, the main difference is the layout of the synthesized chairs. As for
synthesized living rooms, the main difference is the layout of the syn-
thesized cabinets, sofas, and chairs. Since both the deep scene matching

network and the brute force score-based algorithmmatch all virtual fur-
niture in the sightseeing room, the synthesized sightseeing rooms are
the same for EC and EC2, and the synthesized sightseeing rooms are
the same for CC2 and EC1. The synthesized living rooms are the same
for CC2 and EC1 because the deep scene generating network and the
grid-based algorithm generate the same layout for virtual sofas. The
synthesized living rooms are the same for EC and EC2 because the
deep scene generating network and the grid-based algorithm generate
the same layout for the virtual cabinet

7 Conclusion, limitations, and future work

We introduce the real-scene-constrained virtual scene lay-
out synthesis problem and propose a scene layout synthesis
method to solve this problem, which contains 3 steps:
scene matching, matched furniture layout generating, and
unmatched furniture layout generating. For scene matching,
we propose a deep scene matching network to predict the
matching relationship between real furniture and virtual fur-
niture. For matched furniture layout generating, we propose
a layout parameters optimization algorithm to arrange the
matched virtual furniture into the new virtual scene. For
unmatched furniture layout generating, we propose a deep
scene generating network to arrange the unmatched virtual
furniture into the real scene. We evaluate the quality of our
method to synthesize scenes of different kinds and sizes, and
the results show that, comparedwith the heuristic rules-based
method, ourmethod increases thematching accuracy by 15%

and improves the location accuracy by a factor of 5.71, in
total. We also design a user study to evaluate the interactivity
and fidelity of our method. Compared to the manual method
and the heuristic rules-based method, our method has a sig-
nificant improvement in interactivity and fidelity.

Limitation and future work One limitation of our
method is taking little consideration of the vertical direc-
tion of the furniture. In future work, we will take the vertical
information into account. Another limitation is that the main
structure of the real scene and the virtual scene are similar.
Our approach may fail if the structure is too different, such
as synthesizing a bedroom constrained by a kitchen. In the
future, we will build a cross-scene-category dataset and try
to solve the cross-category scene layout synthesis problem.
Another limitation is that our method only pays attention to
the main furniture in the scene, the tiny furniture and decora-
tion styles are ignored. In the future, we will apply some new
scene representation methods to model the information of

123

Real-scene-constrained virtual scene layout... 6337

the tiny furniture and decoration styles and synthesize them.
Another limitation is that our method annotates the scene
graphs manually which is time-consuming. Although there
are a number of rule-based and data-driven methods to gen-
erate the scene graphs automatically, manual calibration is
still required to get good results. In the future, we will design
a neural network-based method to generate the scene graph
automatically.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-023-03167-
4.

Funding This work is supported by the National Natural Science
Foundation of China through Project 61932003, 62372026, by Bei-
jing Science and Technology Plan Project Z221100007722004, and by
National Key R&D plan 2019YFC1521102.

Data availability The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on
reasonable request.

Declarations

Conflict of interest The authors declare no conflict of interest. The
funders had no role in the design of the study; in the collection, analyses
or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

References

1. Huang, C.-K., Chen, Y.-L., Shen, I.-C., Chen, B.-Y.: Retargeting
3d objects and scenes with a general framework. Comput. Graph.
Forum 35(7), 33–42 (2016)

2. Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O.,
Chen, B.: Structure-preserving retargeting of irregular 3d architec-
ture. ACM Trans. Graph. 30(6), 1–10 (2011)

3. Dong, Z.-C., Wu,W., Xu, Z., Sun, Q., Yuan, G., Liu, L., Fu, X.-M.:
Tailored reality: perception-aware scene restructuring for adaptive
vr navigation. ACM Trans. Graph. 40(5), 1–15 (2021)

4. Dong, Z.-C., Fu, X.-M., Zhang, C.,Wu, K., Liu, L.: Smooth assem-
bled mappings for large-scale real walking. ACM Trans. Graph.
36(6), 1–13 (2017)

5. Wang, K., Lin, Y.-A., Weissmann, B., Savva, M., Chang, A.X.,
Ritchie, D.: Planit: planning and instantiating indoor scenes with
relation graph and spatial prior networks. ACM Trans. Graph.
38(4), 1–15 (2019)

6. Fu, Q., Chen, X., Wang, X., Wen, S., Zhou, B., Fu, H.: Adaptive
synthesis of indoor scenes via activity-associated object relation
graphs. ACM Trans. Graph. 36(6), 1–13 (2017)

7. Fisher, M., Savva, M., Li, Y., Hanrahan, P., Nießner, M.: Activity-
centric scene synthesis for functional 3d scene modeling. ACM
Trans. Graph. 34(6), 1–13 (2015)

8. Cant, R.J., Langensiepen, C.S.: Methods for automated object
placement in virtual scenes. In: 2009 11th International Confer-
ence on Computer Modelling and Simulation, pp. 431–436 (2009)

9. Shamir, A., Sorkine, O.: Visual media retargeting. In: ACM
SIGGRAPH ASIA 2009 Courses. SIGGRAPH ASIA ’09. Asso-
ciation for Computing Machinery, New York, NY, USA (2009).
doi:10.1145/1665817.1665828

10. Ma, L., Lin, W., Deng, C., Ngan, K.N.: Image retargeting qual-
ity assessment: a study of subjective scores and objective metrics.
IEEE J. Sel. Topics Signal Process. 6(6), 626–639 (2012)

11. Dong, Z.-C., Fu, X.-M., Yang, Z., Liu, L.: Redirected smooth map-
pings for multiuser real walking in virtual reality. ACM Trans.
Graph. 38(5), 1–17 (2019)

12. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., Koltun, V.: Interac-
tive furniture layout using interior design guidelines. ACM Trans.
Graph. 30(4), 1–10 (2011)

13. Peng, C.-H., Yang, Y.-L., Wonka, P.: Computing layouts with
deformable templates. ACM Trans. Graph. 33(4), 1–11 (2014)

14. Merrell, P., Schkufza, E., Koltun, V.: Computer-generated residen-
tial building layouts. ACM Trans. Graph. 29(6) (2010)

15. Fu, Q., Fu, H., Deng, Z., Li, X.: Indoor layout programming via
virtual navigation detectors. Sci. China Inf. Sci. 65(8), 1–2 (2022)

16. Zhang, S., Han, Z., Lai, Y., Zwicker, M., Zhang, H.: Stylistic scene
enhancement GAN:mixed stylistic enhancement generation for 3d
indoor scenes. Vis. Comput. 35(6–8), 1157–1169 (2019)

17. Vasylevska, K., Kaufmann, H.: Towards efficient spatial com-
pression in self-overlapping virtual environments. In: 2017 IEEE
Symposium on 3D User Interfaces (3DUI), pp. 12–21 (2017)

18. Zhao, X., Su, Z., Komura, T., Yang, X.: Building hierarchical struc-
tures for 3d scenes with repeated elements. Vis. Comput. 36(2),
361–374 (2020)

19. Wang,K., Savva,M., Chang, A.X., Ritchie, D.: Deep convolutional
priors for indoor scene synthesis. ACM Trans. Graph. 37(4), 1–14
(2018)

20. Li,M., Patil, A.G., Xu, K., Chaudhuri, S., Khan, O., Shamir, A., Tu,
C., Chen, B., Cohen-Or,D., Zhang,H.:Grains: generative recursive
autoencoders for indoor scenes. ACM Trans. Graph. 38(2), 1–16
(2019)

21. Feng, S., Mostafa, H., Nassar, M., Majumdar, S., Tripathi, S.:
Exploiting long-term dependencies for generating dynamic scene
graphs. In: 2023 IEEE/CVFWinter Conference on Applications of
Computer Vision (WACV), pp. 5119–5128 (2023)

22. Zanfir, A., Sminchisescu, C.: Deep learning of graph matching.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2684–2693 (2018)

23. Yan, J., Yin, X.-C., Lin, W., Deng, C., Zha, H., Yang, X.: A short
survey of recent advances in graphmatching. In: Proceedings of the
2016 ACM on International Conference on Multimedia Retrieval.
ICMR ’16, pp. 167–174. Association for Computing Machinery,
New York, NY, USA (2016)

24. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn,
P., Querido, T.: A survey for the quadratic assignment problem.
Eur. J. Oper. Res. 176(2), 657–690 (2007)

25. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph
matching. In: Proceedings of the 11th European Conference on
ComputerVision: Part V. ECCV’10, pp. 492–505. Springer, Berlin,
Heidelberg (2010)

26. Leordeanu, M., Hebert, M.: A spectral technique for corre-
spondence problems using pairwise constraints. In: Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume
1, vol. 2, pp. 1482–14892 (2005)

27. Hahn, P., Grant, T., Hall, N.: A branch-and-bound algorithm for
the quadratic assignment problem based on the Hungarian method.
Eur. J. Oper. Res. 108(3), 629–640 (1998)

28. Wang, T., Ling, H., Lang, C., Feng, S.: Graph matching with adap-
tive and branching path following. IEEETrans. PatternAnal.Mach.
Intell. 40(12), 2853–2867 (2018)

29. Kushinsky, Y., Maron, H., Dym, N., Lipman, Y.: Sinkhorn algo-
rithm for lifted assignment problems. SIAM J. Imag. Sci. 12(2),
716–735 (2019)

30. Liu, C., Niu, D., Yang, X., Zhao, X.: Graph matching based on
feature and spatial location information. Vis. Comput. 39(2), 711–
722 (2023)

123

https://doi.org/10.1007/s00371-023-03167-4
https://doi.org/10.1007/s00371-023-03167-4

6338 R. Fan et al.

31. Li, C., Tang, Y., Zou, X., Zhang, P., Lin, J., Lian, G., Pan, Y.: A
novel agricultural machinery intelligent design system based on
integrating image processing and knowledge reasoning. Appl. Sci.
12(15), 7900 (2022)

32. Ji, Z., Chen, K., He, Y., Pang, Y., Li, X.: Heterogeneous memory
enhanced graph reasoning network for cross-modal retrieval. Sci.
China Inf. Sci. 65(7), 1–13 (2022)

33. Wu, T., Duan, F., Chang, L., Lu, K.: Human-object interaction
detection via interactive visual-semantic graph learning. Sci. China
Inf. Sci. 65(6), 1–2 (2022)

34. Zhou, D., Liu, Y., Li, X., Zhang, C.: Single-image super-resolution
based on local biquadratic splinewith edge constraints and adaptive
optimization in transform domain. Vis. Comput. 38(1), 119–134
(2022)

35. Chen, Y., Zhang, Q., Guan, Z., Zhao, Y., Chen, W.: Gemvis: a
visual analysis method for the comparison and refinement of graph
embedding models. Vis. Comput. 38(9), 3449–3462 (2022)

36. Wang, R., Yan, J., Yang, X.: Learning combinatorial embedding
networks for deep graph matching. In: 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 3056–3065
(2019)

37. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for
deep spatial-temporal graph modeling. In: Proceedings of the 28th
International Joint Conference onArtificial Intelligence. IJCAI’19,
pp. 1907–1913. AAAI Press, Palo Alto, CA (2019)

38. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph
representations. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI’16, pp. 1145–1152. AAAI Press,
Palo Alto, CA (2016)

39. Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.-J.:
Cluster-gcn: An efficient algorithm for training deep and large
graph convolutional networks. In: Proceedings of the 25th ACM
SIGKDDInternationalConference onKnowledgeDiscoveryAmp;
Data Mining. KDD ’19, pp. 257–266. Association for Computing
Machinery, New York, NY, USA (2019)

40. Li, Q., Han, Z., Wu, X.-M.: Deeper insights into graph convolu-
tional networks for semi-supervised learning. In: Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Confer-
ence and Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18. AAAI Press,
Palo Alto, CA (2018)

41. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep
learning architecture for graph classification. In: Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Confer-
ence and Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18. AAAI Press,
Palo Alto, CA (2018)

42. Huang, W., Zhang, T., Rong, Y., Huang, J.: Adaptive sampling
towards fast graph representation learning. In: Proceedings of the
32nd International Conference on Neural Information Processing
Systems. NIPS’18, pp. 4563–4572. Curran Associates Inc., Red
Hook, NY, USA (2018)

43. Chen, J., Ma, T., Xiao, C.: FastGCN: Fast learning with graph
convolutional networks via importance sampling. In: International
Conference on Learning Representations (2018)

44. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.:
Neural message passing for quantum chemistry. In: Proceedings of
the 34th International Conference on Machine Learning - Volume
70. ICML’17, pp. 1263–1272. JMLR.org, New York, NY (2017)

45. Spinelli, I., Scardapane, S., Uncini, A.: Adaptive propagation graph
convolutional network. IEEE Trans. Neural Netw. Learn. Syst.
32(10), 4755–4760 (2021)

46. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini,
G.: The graph neural network model. IEEE Trans. Neural Netw.
20(1), 61–80 (2009)

47. Wei, H., Meng, L.: An accurate stereo matching method based on
color segments and edges. Pattern Recognit. 133, 108996 (2023)

48. Ryan Prescott Adams, R.S.Z.: Ranking via sinkhorn propagation
(2011)

49. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for
human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling,
M. (eds.) Computer Vision-ECCV 2016, pp. 483–499. Springer,
Cham (2016)

50. Fu, H., Jia, R., Gao, L., Gong, M., Zhao, B., Maybank, S., Tao, D.:
3d-future: 3d furniture shape with texture. Int. J. Comput. Vis. 129,
3313–3337 (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Runze Fan is a Ph.D student at
the School of Computer Science
and Engineering, Beihang Univer-
sity, China. His current research
focuses on virtual reality and aug-
mented reality.

Lili Wang is a professor at the
School of Computer Science and
Engineering, Beihang University,
and a researcher of the State Key
Laboratory of Virtual Reality Tec-
hnology and Systems. Her research
interests include virtual reality, aug-
mented reality, and rendering.

123

Real-scene-constrained virtual scene layout... 6339

Xinda Liu is currently working
toward the Ph.D. degree at the
State Key Laboratory of Virtual
Reality Technology and Systems,
School of Computer Science and
Engineering, Beihang University,
Beijing, China. His research inter-
ests include machine learning and
image processing.

Sio Kei Im is a professor at the Fac-
ulty of Applied Sciences, Macau
Polytechnic University, and a rese
archer at the Engineering Research
Center of Applied Technology on
Machine Translation and Artifi-
cial Intelligence, Ministry of Edu-
cation. His research interests incl-
ude video coding, image process-
ing, machine learning for NLP
and multimedia.

Chan Tong Lam is currently an
Associate Professor with the Fac-
ulty of Applied Sciences, Macao
Polytechnic University, Macao
SAR, China. His research inter-
ests include mobile wireless com-
munications, digital signal process-
ing, machine learning in commu-
nications, and computer vision in
smart cities.

123

	Real-scene-constrained virtual scene layout synthesis for mixed reality
	Abstract
	1 Introduction
	2 Related work
	2.1 Scene retargeting
	2.2 Scene synthesis
	2.3 Graph matching

	3 Method
	3.1 Pipeline
	3.2 Scene representation
	3.2.1 Scene graph
	3.2.2 Scene projection

	3.3 Scene matching
	3.4 Matched furniture layout generating
	3.5 Unmatched furniture layout generating

	4 Dataset construction
	4.1 Indoor Scene Layout Synthesis Dataset
	4.2 Scene matching annotating
	4.3 Unmatched furniture layout generating annotating

	5 Experiment
	5.1 Training
	5.1.1 Deep scene matching network
	5.1.2 Deep scene generating network

	5.2 Metric
	5.3 Results
	5.3.1 Matching accuracy
	5.3.2 Location accuracy

	5.4 Comparison

	6 User study
	6.1 User study design
	6.1.1 Participants
	6.1.2 Hardware and software setup
	6.1.3 EC and CC
	6.1.4 Task
	6.1.5 Procedure
	6.1.6 Metric
	6.1.7 Statistical analysis

	6.2 Results and discussion
	6.2.1 Touchable time
	6.2.2 Class correctness
	6.2.3 Touch score
	6.2.4 Experience score

	6.3 Ablation study
	6.3.1 Ablation study design
	6.3.2 Results and discussion

	7 Conclusion, limitations, and future work
	References

