
CrossKeys: Text Entry for Virtual Reality
Using a Single Controller via Wrist Rotation

Fig. 1. The overview of CrossKeys. (a) is the core of CrossKeys, consisting of the three-dimensional structure of character layout and
the embodied controller in the virtual environment; (b) is the user perspective in most of our pilot and user studies, consisting of a text
indicator, an input field, a set of predictive auto-complete candidates, and the CrossKeys in use; (c) is the third-person perspective of a
CrossKeys user proceeding a text entry task during a user study, which clearly exhibits that CrossKeys is based on single controller
manipulation and wrist rotation. As it can be seen by comparing the controller directions in (a) and (c) that the embodied controller
in the virtual environment is based on the real controller but rotated perpendicularly to make a more natural wrist rotation around a
horizontal axis.

Abstract—Text entry has long been an indispensable part of people’s lives; notwithstanding, in virtual reality (VR), an efficient and
handy text entry method for such an environment is still wanted. There are two negative factors in the very majority of existing text entry
methods: 1) constrained by two-dimensional mapping; 2) must manipulate with both hands to ensure efficiency. Few are employing
the three-dimensional space a virtual environment provides, with which text entry could perform much better; also, even with several
methods enabling one-hand manipulation, the trade-off is off-balance when sacrificing performance.
Therefore, we propose an innovative text entry method to achieve a faster speed, higher accuracy, and better user experience. We
design a cross-like layout to reduce the average distance of spatial displacement when selecting characters. In selecting and entering
characters, a user simply rotates the wrist and points the embodied controller to one of the seven character blocks in the virtual
environment; afterward, within the selected block, the user enters the target character or auto-completion candidate word via two basic
trackpad interactions, touching and clicking. We evaluate our CrossKeys mainly based on two criteria: efficiency, task load, and three
tasks: learnability and performance test, fatigue test, and evaluation of in-motion performance. To evaluate efficiency, we analyze words
per minute (WPM) and error rate (NCER, TER); to evaluate task load, we analyze NASA-TLX and Simulator Sickness Questionnaire
(SSQ) results. According to the data from our participants after only 2 hours of first-time training, our CrossKeys performs well with an
average WPM of 17.73, a peak WPM of 24.73, and an error rate (NCER) of 0.30% along with a low task load.

Index Terms—Virtual Reality, Text Entry, Wrist-based Interaction, Single Controller Input, 3D Keyboard Layout

1 INTRODUCTION

Text entry has been widely applied to traditional electronic devices,
such as the most omnipresent QWERTY keyboard for personal comput-
ers and the T9 keyboard for mobile smartphones. Texting has long been
an indispensable part of people’s lives; countless scenarios, like online

chatting and searching, cry for an advanced text entry method. Notwith-
standing, in VR, even with the fast development itself, an efficient and
handy text entry method for such an environment is still wanted. Al-
though there are already several text entry methods introduced, few are
employing the three-dimensional space a virtual environment provides,
indicating that there is still room for improvement in terms of entry
efficiency and user experience.

Many researchers before us have already explored various possibil-
ities of techniques we discuss in this paper. To start with, about text
entry, there are many text entry methods, we can refer to, no matter
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they are devised for traditional electronic devices or newer technologies
like VR. For instance, methods like PizzaText [33], FingerT9 [28], and
DepthText [17] all aim at text entry in virtual environments. Then,
about 3D user interaction in VR, we have DeepSketch2Face [6] and
many other methods to decode and translate spatial movements into
other types of information. Last but not least, about wrist-based in-
teraction, there are also many human-computer interaction research
groups that have examined the possibility of such an interaction, such
as WristFlicker [25] and WRIST [31].

In this paper, we introduce CrossKeys, a novel, efficient, and handy
text entry technique for VR using a single controller via wrist rotation
(Fig. 1). By rotating the wrist along with simple clicking, a user
can easily and accurately enter text using one single controller. In
the process of text entering, a user completes all the tasks with wrist-
controller interaction, including character inputting, auto-completion
selection, and deleting.

We initially designed three distinct layouts for our CrossKeys; to
decide which to finalize, we conducted a set of pilot studies. The results
indicated that participants could achieve an average of 12.31 WPM
with the layout prioritized in alphabetical order after a very short period
of training (10 min), which is significantly better than the other two
layouts; therefore, we decided to make the layout strictly alphabetical.
To further explore its learning curve and evaluate its performance,
we then designed and conducted three user studies, concentrating on
learnability, fatigue, and in-motion performance, respectively. In the
study of learnability, a novice user could be expected to achieve a
WPM of 11.76 and an NCER of 0.64% after the first 45 minutes of
training; after the third 45 minutes of training, the same user could
achieve a WPM of 17.73 and an NCER of 0.30%, which has already
outperformed the current state-of-the-art method. In the study of fatigue,
we asked the participants to enter phrases for 2 minutes, 6 minutes,
and 10 minutes after training for 45 minutes. No significant difference
was found under the analysis. There is also no significant difference in
not corrected error rates among three conditions. The above illustrates
that CrossKeys has relatively good fatigue resistance. In the study of
in-motion performance, we employ a treadmill to simulate walking in
real life. The results show that the WPM drops very little, from 17.42
to 17.36, indicating that our CrossKeys is light-weighted enough to
manipulate while walking and, with a reasonable speculation, during
moderate motion.

Our contributions in this work include: 1) CrossKeys, a text entry
method that employs the three-dimensional space a virtual environ-
ment provides; 2) a light-weighted text entry method using only one
controller with simple wrist rotating and clicking; 3) outperforming
the similar state-of-the-art method with a average WPM of 17.73; 4) a
wider application scenario where users can enter text in virtual environ-
ments during moderate motion like walking.

2 RELATED WORK

Text entry in VR is a fundamental technique; notwithstanding, it has
been a considerable challenge to optimize the entering speed while
lowering the error rate. To address this problem, researchers in the field
have proposed a variety of methods, including entering via interactions
based on tracking of the user’s head, hands, or eyes; these methods have
achieved some success and also are a great inspiration to us. Moreover,
in virtual environments, it is common that users need to perceive the
space and interact with the system in a three-dimensional way. Many
other pieces of research about three-dimensional interaction, even if
they are not conducted for text entry in VR, greatly contribute to our
ideas. Likewise, research about wrist-based interaction has also spurred
our imagination and helped to finalize our CrossKeys.

2.1 Text Entry in Virtual Environments
Outside VR, daily, most people enter text via physical keyboards, voice
recognition, and handwriting; these are the most omnipresent text entry
methods for traditional electric devices. However, in VR, it would be
unlikely and unsustainable to have a physical keyboard or to write on
a pad; also, under countless circumstances, it would be improper to
speak for voice recognition, such as when in a library where silence is

needed. VR, as a technology at its burgeoning incipience, may not be
so common for everyone to have access to it; so, text entry in VR could
break the bound of traditional methods, hence the myriad of innovative
methods that have been introduced.

First of all, the majority of text entry methods in VR are based on
the tracking of hands. One category of them is to map characters to
the spatial coordinate derived from the user’s hands. One of the most
innovative among them is the ATK system [32] introduced by X. Yi
and his colleagues; the system enables users to type in VR via tracking
fingers’ movement in the air and provide visual response on a desktop
display.

Text entry based on controllers is also very common. PizzaText [33]
divides the round trackpad of a controller into seven pieces and enables
users to select characters from different pieces via touching on the
corresponding one. Besides PizzaText, there are many other similar
methods based on finger-touching on a controller, such as FingerT9 [28]
and QwertyRing [5]. Finger-touching is a common idea for text entry
in VR; nonetheless, if a method is solely based on the tracking of finger-
touching, it can be tiresome for users as constantly finger moving
always causes fatigue.

Head-mounted display (HMD) is a basic wearable device in VR;
besides providing virtual visual environments for users, it can also
detect users’ head movement and enable users to select with a ray
pointer. Text entry based on HMD is also very popular in VR. For
instance, DepthText [17] employs the acceleration-sensitive embedded
IMU sensor to translate head movement into texts; RingText [29],
another method based on HMD, realizes text entry by aiming the
ray pointer at characters on a round virtual keyboard with the slight
movement of a user’s head.

Besides, text entry based on eye movement is another innovative
method, such as Filteryedping [21], EyeSwipe [14]. Via eye interactions
like gazing, blinking, and staring, texts can be selected and entered.

2.2 3D Interaction in Virtual Reality
Three-dimensional interaction has already been realized and applied
by text entry in traditional electronic devices, such as Vulture [20].
With the advent of VR, 3D interaction has also be emphasized as an
important part of VR technology. To enable users to obtain the same
spatial perception as reality through three-dimensional interaction in
virtual environments, so as to realize text entry, is a goal pursued by
researchers in the VR field.

In perceiving virtual space as reality, 3D-drawing is currently a
popular research topic, where users move their fingers in a virtual
environment to draw the desired graphics. In 2017, Delanoy Johanna
et al. proposed a way to generate 3D sketches by predicting the depth
volume based on several 2D sketches through machine learning [11]
and DeepSketch2Face [6] was put forward as a deep learning based
sketching system for 3D face and caricature modeling.. Hongbo Fu’s
team also implemented a way to perform 3D-drawing in mobile AR
devices in a paper published in 2019 [15], but at this time the research
was still dependent on the cell phone screen. In 2021, their team came
up with HandPainter - a way to draw in virtual environments via hand-
worn hardware [10]. This evolution makes 3D-drawing more realistic
and allows users to have a better drawing experience.

Modeling in virtual environments is another important topic. Usually,
designers model using professional 3D modeling software, such as
MAYA, 3D Max, etc., but 3D-modeling born out of 3D input technology
may overturn this traditional way. Users in virtual environments can
quickly construct three-dimensional models directly through action of
hands. The same is true in the field of augmented reality (AR). As early
as the beginning of this century, the idea of automatically generating 3D
models in VR through image sequences was already proposed [23]. In
recent years, VR technology has gradually matured, the corresponding
technology has been improved, and 3D-modeling has been a lot more
common. In education, K. A. Darabkh develops a 3D drawing and
modeling tool for schools [2]. In addition, the combination with 3D
sketching technology makes the modeling accuracy of 3D-modeling
improved, and H. Fu and his colleagues propose a method to generate
details on the model by sketching a few strokes on the already built 3D

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



model, making 3D-modeling more realistic [18].
Closely related to text entry in virtual environments is the 3D virtual

keyboard; but due to the influence of traditional 2D keyboards, 3D
keyboards are not common. The team that introduced Cubic Keyboard
[30] has proposed a cube-like 3D keyboard that divides a cube into
3⇥3⇥3 smaller cubes and embeds letters in them. However, as the
letters overlap, it does not provide a preferable visual experience. In
addition to 3D virtual keyboard, 3D gesture is also a research topic
for text entry. In a paper proposed by S. Chen and his colleagues [1],
the authors explore gesture-based text entry technology, using a VR
controller of six degrees of freedom for gesture typing, making the
keyboard no longer constrained to flat surfaces, but the whole space
can be a “keyboard”.

3D interaction in VR scenarios is multisensory, enabling users to
interact well in a three-dimensional space with visual, auditory, and
tactile senses. To provide better real-time stereoscopic 3D images, Y.
Ikei and his colleagues propose a method called TwinCam [8], which
uses two 360° cameras to provide high-quality Visual Telepresence. In
the auditory aspect, H. Kim and his colleagues propose an immersive
audio spatial system [13] that enables spatial audio to be synchronized
with visual information. In addition to visual and auditory satisfaction
of user spatial interaction needs, haptic feedback is also essential. D.
Valkov and his colleagues propose a stand-alone hardware device for
alerting users in immersive virtual environments (IVEs) of possible
collisions with real-world objects [27], enhancing the risk predictability
of VR systems. Of course, there are studies with greater ambitions that
seek to develop a complete 3D interaction system, such as the research
conducted by T. M. Takala and his colleagues [26], which introduced a
stand-alone, wearable system for full-body and finger tracking that can
fully enhance the user’s 3D interaction perception.

In our research, three-dimensional interaction is also an important
concept, which is more reflected in users’ visual interaction with the
3D keyboard. Therefore, our CrossKeys also aims to enable users to
have a better 3D interaction experience.

2.3 Interaction Based on Wrist Movement
Spurred by single-handed text entry methods such as FingerText [16]
and understood their shortcomings such as costly learning effort and
high task load while using, we turned to finding another type of single-
handed interaction approach in VR, wrist-based interaction. Wrist
motion-based interaction is a less common interaction method. Al-
though wrist rotation is influenced by the body’s muscular and skeletal
structure, wrist motion can utilize less load in exchange for better
responsiveness as long as a reasonable range of rotation is controlled.

WrisText [4] proposed a wrist-turn-based text input on a smartwatch,
which divides the keyboard on the display into 6 parts and selects letters
on a region by turning the wrist to that region. This input method is
bit similar to our CrossKeys, however, it does not handle wrist rotation
properly. 6 directions of rotation make the wrist load different, and
certain rotation angles can bring some discomfort to the user. In 2019,
Shirin Feiz et al. explored and studied feasibility of wrist gestures
for non-visual interactions with wearables [3]. They concluded that
wrist gestures are a new type of input that users can use for a range of
one-handed interactions with these devices. In addition, wrist gestures
are particularly attractive to people with visual impairment (PVI) and
can provide them with additional assistance.

To better detect wrist rotation, many studies have considered the
use of sensors to listen to wrist motion, such as WristFlicker [25] and
WRIST [31]. They have mathematically separated wrist rotation from
arm and hand motion, allowing wrist motion to be better detected.
Wrist rotation is sensitive, and using it with equally sensitive sensors
can better improve the recognition of wrist motion interactions.

We design CrossKeys to take advantage of this flexibility in wrist
movement, using the controller as a ”sensor” to detect wrist movement
and making it better listened to.

3 METHOD

3.1 Design Rationale
Our CrossKeys complies with the following design rationales.

Fig. 2. TouchPad, Trigger, and GripButton on a HTC Vive controller.
These three interactive units enable all the interaction and functionality
designed for our CrossKeys.

The design of CrossKeys was partly inspired by sign language, most
of which are expressed via hand movement. A hand along with its
skeletal structure connecting to the wrist is capable to complete various
interactive actions with a VR controller; however, most of the similar
controller-based text entry methods apply only actions based on fingers,
failing to notice the possibility in wrist-based interaction. Rotating a
VR controller is a natural tendency when holding one. Many other
applications in VR, such as video games, have already employed wrist-
based actions to interact with the virtual environment, so this is not
totally strange with VR users and practitioners.

Therefore, we thought that hand movement, particularly that of
wrist in the context of VR, could be unprecedentedly applied to a
text entry method. We initially devised two options to realize text
entry based on wrist rotation: one is to perform character selection by
panning the hand in six dimensions: front, back, left, right, up and
down; the other is to perform selection by wrist rotation. After amounts
of fastidious discussion and tests, we reasonably drew a conclusion
that the panning of the hand in six dimensions would make it more
painstaking for users than by wrist rotation, where users would feel a
lot less fatigued. Eventually, we adopted wrist rotation as the principle
interaction approach.

Traditional physical keyboards (such as qwerty keyboards, T9 key-
boards) are two-dimensional; they are most accustomed to by ordinary
electronic device users, making the majority of existing text entry
methods inherit such a two-dimensional notion. But if we manage to
break the limitation of this two-dimensional stereotype and create a
three-dimensional keyboard that provides spatial interaction, a startling
way to implement text entry can be introduced. CrossKeys harnesses
the rotation of a wrist to select from characters; by mapping three-
dimensional movement into a spatial keyboard, CrossKeys is, in the
consideration of both speed and accuracy, a state-of-the-art method for
text entry in VR.

About wrist rotation, on the one hand, there are thresholds to a
combination of comfortable rotation angles; therefore, we manage
to constrain users’ wrist rotation within a ergonomics-friendly range,
thanks to which users’ wrist fatigue is successfully minimized. On the
other hand, it is a fact that the rotation of the wrist with the ulnar radius
as the axis is relatively easier, while the inward and outward movement
will be much harder and is limited by hand muscles and bone structures.
As a result, we assign five character blocks that can be accessed via
ulnar radius rotation, and two fewer to be accessed via in-and-outward
movement.

3.2 Keyboard Layout
CrossKeys, a three-dimensional keyboard, consists of two crossed arc
segments. The arrangement of the seven character blocks is derived
from a design concept mentioned before that ulnar-axis rotation is
easier; Therefore, we put five blocks in a total of seven on the arc
accessed by ulnar-axis rotation and the rest on the other. For each
character block, we divide 28 characters (26 English alphabetic letters
, aligned with comma (,) and period(.)) into 7 groups; each character
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block corresponds to one particular group, i.e. each character block
contains 4 characters.

On deciding the distance between every two adjacent blocks, we had
5 members in the lab to trial our CrossKeys and rotate their wrists to
the extreme of a subjective comfortable degree in four directions: left,
right, front, and behind. We then averaged these degrees to equally
distance the blocks.

3.3 Interaction and Functionality
As shown in Fig.4, the user interface of CrossKeys consists of four
parts: a text indicator, an input field, a set of predictive auto-complete
candidates, and the CrossKeys itself. The text indicator displays the
particular test text assigned to the current study participant; the input
field provides an area to enter texts; the set of candidates provides
three possible words with the same prefix with the current inputted
character sequence that are likeliest to be entered. On deciding how
many candidates to reveal to the user to achieve a most optimized
efficiency, we referred to P. Quinn and S. Zhai’s work [22] to evaluate
the trade-off between suggestion savings and interaction costs and make
sure that the efficiency saving is improved while the cost of finding,
selecting, and interacting is correspondingly reduced. After a thorough
evaluation, we settled the number of candidates revealed to 3.

To lower the task load and make it easier for new users to learn
and adapt, we decide to use as few buttons as possible. Therefore, on
finalizing which buttons to use, we examined the most frequently-used
programmable and interactive ones; finally, we programm three buttons:
TouchPad, Trigger, and GripButton as shown in Fig. 2. To elucidate
our interaction method more clearly, we divide the operating space
into 5 areas as shown in Fig.3: 4 Deactivated areas and 1 Activated
area. When in the Activated area, TouchPad is to select, enter normal
characters; when in the four Deactivated areas, TouchPad is to choose
between three predictive auto-complete candidates. Trigger is to delete
the normal character at the tail of the current entering sequence at any
given time, while GripButton is to enter a blank space at any given
time.

The CrossKeys system has four main functions:

• Selecting and Entering a Normal Character (excluding blank
space): After moving the tip to the Activated area, turn the wrist
to point to the character block where the target character is located,
making it highlighted. At this time, according to the position of
the target character in the character block (up-down-left-right),
gently touch the corresponding position on the TouchPad to se-
lect it from the highlighted character block.
The location mapping complies with the following formula:
SelectedBlock = EuclideanDistance(Tip,Block)< 5cm

• Selecting and Entering an Auto-complete Candidate: Once
the target word occurs in the candidate list, move the tip out of
the Activated area into any of the four Deactivated areas. At this
time, according to the position of the target word in the candidate
list (left-middle-right), click the TouchPad on the corresponding
position to select the target word and enter.

• Entering a Blank Space: At any given time, click the
GripButton to enter a blank space. The occurrence of a blank
space will interrupt and reset the current auto-complete prediction.

• Delete a Character: At any given time, pull and click the Trigger
to delete a character at the tail of the current entering sequence.

3.4 Text Entry Assistance
To better assist users with text entry using CrossKeys, we have added
text entry assistance to the base design.

Auto� completionAuto� completionAuto� completion CrossKeys keyboard provides users with an auto-
completion feature. We have designed and implemented an algorithm
to automatically predict words to be entered based on matching the
current inputted character sequence with words with the same sequence
as prefix. For example, when the user enters a sequence of ”grad”, the

Fig. 3. The projection of four Activated areas and one Deactivated area
of CrossKeys’ spatial interaction.

Fig. 4. The user interface system of CrossKeys, in which currently the
zoomed block, E �F �G�H is selected.

algorithm selects three candidate words ordered by using frequency
from high to low, which are ”graduation”, ”grade”, and ”graduate”.
When the dot is pointed to one of the four Deactivated areas, the left,
middle, and right buttons of the trackpad can be clicked to select and
enter the candidate on the corresponding place to improve entering
speed and accuracy.

Special Display o f ControllerSpecial Display o f ControllerSpecial Display o f Controller We concisely embody the controller
into the virtual environment and rotate it by a vertical angle to make the
embodied controller in the virtual environment point upward while the
real controller is horizontally pointing to the front, so that the rotation
of the wrist and the action of pointing can be conducted more naturally
since the CrossKeys’ character region is actually above the user’s
manipulating hand. Once accustomed to this simple displacement,
users do not need to awkwardly twist their wrists to reach certain
character blocks and subsequently achieve a better efficiency.

4 PILOT STUDY

We evaluated different keyboard layouts and determined whether or
not to highlight the selected character block in order to derive the most
promising overall layout and interaction interface.
Participants and Hardware Setup Six participants (half of them are
men and the other half are women) in total of an average age of 20
distributing equally from 18 to 22, all with normal or corrected-to-
normal vision and no impaired wrists conducted this study.We used
an Intel Core i7 processor PC with a dedicated NVIDIA GTX 1070
graphics card and an AMD processor laptop with a NVIDIA GTX
3060 graphics card. The experimental program is written in C# .NET
programming language and runs on the Unity 3D platform.
Metrics We employed WPM (Words Per Minute), TER (total error
rate) and NCER (not corrected error rate) to evaluate our entry method.
The text entry speed was measured and evaluated with WPM using
the following formula, where according to the universal standard, 5
consecutive letters, including spaces and symbols like commas and
periods, make a word:
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Table 1. Average WPM, TER, and NCER in Pilot Study I. Statistical
significance is denoted with an asterisk.

Metrics Condition Mean Value Pair Pair p-valueand total p-value ±std.dev
PEC I 12.31±5.34 PEC I, PEC II 0.002⇤

WPM:0.004* PEC II 9.42±3.88 PEC I, PEC III 0.013⇤
PEC III 9.66±3.09 PEC II, PEC III 0.694
PEC I 3.1%±10.5% PEC I, PEC II 0.559

TER:0.815 PEC II 5.5%±15.4% PEC I, PEC III 0.814
PEC III 4.0%±12.5% PEC II, PEC III 0.687
PEC I 0.5%±1.3% PEC I, PEC II 0.183

NCER:0.245 PEC II 1.6%±3.6% PEC I, PEC III 0.190
PEC III 0.9%±2.5% PEC II, PEC III 0.338

WPM =
|S|
T

⇥ 60
5

(1)

|S| represents the length of the entered phrases. T represents the task
completion time, which was recorded as the time elapsed from when
the first letter or phrase is selected to the end of the trail.

Error rate is to evaluate our method’s accuracy. The error rate is
calculated based on standard typing metrics [24]. Total error rate
(TER) takes both corrected error rate (CER) and not corrected er-
ror rate (NCER) into account. NCER refers to errors found dur-
ing the final examination of the text participants entered, where
T ER = NCER + CER. We report the error rate based on TER
and NCER.
Analysis Method For Pilot User Study I, where the factor (layout
options) had three levels, we employed one-way repeated measures
ANOVA. LSD Correction was employed for post-hoc pairwise compar-
isons, and Greenhouse-Geisser adjustment was employed for degrees
of freedom for violations to sphericity. For Pilot User Study II, we em-
ployed T-test with Form(Highlighting and no highlight) as the variable.
Due to the within-subject design, the T-test is paired samples t-test.
Shapiro-Wilk Test is employed for testing the normal distribution of
the data.

4.1 Pilot Study I: Keyboard Layout
The role of this pilot study was to decide on the most promising key-
board layout and the more comfortable interaction layout. For the
keyboard layout, we considered three design dimensions to design
three different options(Pilot experimental options, or PEC).
PEC IPEC IPEC I The first layout is designed strictly in alphabetical order, divid-
ing the 26 letters from A to Z into 7 groups and filling them into the
template of the input layout in turn, as shown in Fig. 5 (a).
PEC IIPEC IIPEC II In designing the second layout, we imitated the layout of the
QWERTY keyboard in daily use by arranging the letters as similar to
the QWERTY layout as possible, as shown in Fig. 5 (b).
PEC IIIPEC IIIPEC III The third layout is based on the frequency of letters in daily
use. After sorting and organizing the frequency of use of all letters, we
place the letters with high frequency of use in or as close to the default
original position as possible, and the resulting layout is shown in Fig. 5
(c).
Procedure We use a within-subject design, in which participants per-
form the tasks in all conditions. The entire experiment consisted of
3 key layouts and 4 sessions. Before the experiment started, partici-
pants could practice and get familiar with the device as well as with
the letter layout. During this time, they would try to enter 5 phrases
to better familiarize themselves with the full operation and operating
environment. For each session, participants would enter phrases using
the input method to which they have been assigned. All phrases would
be randomly generated from the MacKenzie Phrase Set [19]. After
each session, participants would be given enough time to rest till the
next test to avoid motion sickness, which could affect the results of the
experiment.
Results and Discussion The ANOVA yields a significant effect of the
layout on WPM (F1.59,36.56 = 7.474, p = .002⇤). Table 1 shows

Table 2. T-test results including average WPM, TER and NCER in Pilot
Study II. Statistical significance is denoted with an asterisk.

Metrics Condition Mean Value p-value Cohen’s d±std.dev

WPM
PCC 12.31±5.34

0.001* 0.32
PEC 13.78±5.33

TER
PCC 3.1%±10.5%

0.205 0.28
PEC 5.6%±6.8%

NCER
PCC 0.5%±1.3%

0.447 0.28
PEC 1.0%±2.1%

the average entry speed for the three options. Post-hoc comparisons
revealed that PEC I (M = 12.31, SD = 5.34) was significantly faster
than (p = .002⇤) PEC II (M = 9.42, SD = 3.88) and significantly
faster than (p = .013⇤) PEC III (M = 9.66, SD = 3.09).

The ANOVA doesn’t show any significant effect of layout on TER
(F2,46 = .205, p = .815) or on NCER (F1.155,26.563 = 1.443, p =
.247). The results of the analysis provide evidence for the speculation
that the layout does not generate significant negative impact on the
error rate of text entry. Table1 shows TER and NCER for the three
letter layouts.

Eventually, according to the experimental results, The first layout
designed strictly in alphabetical order was chosen as the best keyboard
letter layout, with fast entry speed and similarly low error rates.

4.2 Pilot Study II : Highlighting the Selected Character
Block

The role of this pilot study was to figure whether the function of high-
lighting the selected character block could make any difference. We
took the data from the previous experiment condition which possessed
the best performance (the alphabetical order) as the PCC(short for pilot
control condition) in the comparison study for the interaction interface.
PCCPCCPCC The data are copied from those of Pilot Study I, where the layout
is alphabetical order, the PEC I.
PECPECPEC This experiment condition is to highlight the letter blocks users
point to by changing the colors of the certain block, while all the previ-
ous experiment conditions in Pilot Study I did not highlight any of the
blocks at any time.
Procedure The participants only needed to perform the experiment
with PEC. Before the experiment, participants had 10 minutes to get
familiar again with the equipment and the key layout. The participants
would enter four sessions, of which the phrases were randomly gener-
ated from the MacKenzie Phrase Set.
Results and Discussion Based on T �tests, PEC has a significant effect
on WPM (p = .001⇤,Cohens0 d = 0.32).Also, PEC(M = 13.78,SD =
3.83) is greater in WPM than PCC(M = 12.31,SD = 5.34). No signif-
icant effect was shown on TER(p = 0.205) and NCER(p = 0.447).

According to the data obtained on the subject, the use of highlighting
the selected character block significantly improves WPM, while having
no adverse effect on TER or NCER. So we decide to use the text
entry display interface with highlighted high-frequency letters in the
following user study.

5 USER STUDY

We design three tasks to evaluate our method from two perspectives:
learnability and usability.

5.1 Study Design
Participants and Hardware Setup Thirty-two participants in total
(half are men and half are women) of an average age of 20 distributing
equally from 18 to 30, all with normal or corrected-to-normal vision
and no impaired wrists conducted this study. Half of the participants
have experience in using VR devices. The hardware used were the
same as in Pilot Study, and a treadmill was used as well.
Task 1 This task is to evaluate CrossKeys’ performance and learnability.
For 3 days, the participant would train for 45 minutes each day. Then,
they would need to enter fifteen phrases, which would be randomly
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(a) The scheme for PEC I : Al phabetical Order.
Every gray circle represents an actual WordBlock
in CrossKeys, while the crosses help to illustrate
the layout and are not shown in the real applica-
tion.

(b) The scheme for PEC II : QWERTY � like.
The meaning of the gray circles and the crosses is
the same with Fig. 1.

(c) The scheme for PEC III : Frequency. The
meaning of the gray circles and the crosses is the
same with Fig. 1.

Fig. 5. Three initial options for our CrossKeys’ keyboard layout, from which we selected PECI after our fastidious pilot studies.

(a) The scheme for PCC : No Highlight. The character block does not
highlight itself by changing its color when pointed at.

(b) The scheme for PEC : Highlight. The character block turns into yellow
when it is pointed at.

Fig. 6. The pilot study to evaluate the effect of highlighting selected character block by changing its color to an accent one like yellow.

generated from the MacKenzie Phrase Set, as fast as possible.
Task 2 This task is to evaluate the performance of CrossKeys under
long-term input, which we define as fatigue test. After training for 45
minutes, the participants would need to enter phrases generated from
the Mackenzie Phrase Set for 2 minutes, 6 minutes, and 10 minutes.
Task 3 Since our Crosskeys is totally capable to be manipulated easily
with a single controller, it is necessary to evaluate its performance when
being used while moderate motions, among which the most common is
walking. Therefore this task is designed to evaluate the performance of
CrossKeys in non-stationary situations. Participants from Task 2 would
try to enter words in a moving condition. They would each need to
respectively enter ten phrases in stationary condition and walking on a
treadmill at a fixed speed.
Metrics The objective metrics are the same as those in the pilot studies,
including WPM, TER and NCER. Moreover, we import several sub-
jective metrics to evaluate users’ feelings when using CrossKeys. We
use SSQ(Simulator Sickness Questionnaire) [12] testing rates of Oculo-
motor, Nausea, Disorientation and Total Severity, use NASA-TLX [7]
testing workload.

5.2 Task 1: Learnability and Performance Test
The role of task 1 is to evaluate the learnability of CrossKeys and also
to make an evaluation of the general performance of CrossKeys from
the objective perspective.
Procedure Every participant would undergo a three-day experiment.
The whole experiment contains a series of sessions, with one session to
be finished in each day (Session 1, Session 2, and Session 3). In each
day, the participants would have 45 minutes to train to enter phrases as
fast and accurately as possible. After the training, they would enter 15
phrases generated from the MacKenzie Phrase Set as a session.

Analytical Method We employed a one-way repeated measures
ANOVA with Sessions as the within-subject variable. Greenhouse-
Geisser adjustment was employed for degrees of freedom for violations
to sphericity.
Results and Discussion Table 3 shows the mean WPM, TER and
NCER in task 1. The ANOVA reveals a significant effect of the Session
on WPM (F2,30 = 207.197, p = .000⇤). Compared to Session 1, the
WPM improvement on Session 2 and Session 3 are 19.41% and 50.82%.
This was made possible by the accumulation of learning time and the
participants’ increasing proficiency in using CrossKeys for text entry.
Also, the increase implies that our text entry method still has potential
to reach higher WPM. In Session 3, the mean WPM has reached 17.73,
and one of the participants has reached 24.73 after typing one set of
phrases. CrossKeys’ WPM is generally faster than other selection based
entry methods(for example, HiPad [9]).

The ANOVA doesn’t show any significant effect of Session on TER
(F2,30 = 0.011, p = .989) and NCER (F1.171,17.571 = 4.100, p =
.053). In general, NCER had decreasing values, which also resulted
from the increasing proficiency of the participants, like WPM. In Ses-
sion 2, TER shows a slight increase. This may be due to the fact that,
during the actual input, there may be candidate words that are very
close to the target word, but the candidate word list does not show
the target word itself. At this point, participants are more likely to
choose the candidate word that is close to the target word first, and
then make changes to that candidate word. In other words, when enter-
ing texts, users under certain circumstances would sacrifice TER for
speed (WPM) and NCER by selecting a partly identical candidate word
and deleting the different part on its tail. This leads to an increase in
the CER, thus resulting in an increase in TER, and yet no increase in
NCER.
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Table 3. Average WPM, TER, NCER in Task 1. Statistical significance is
denoted with an asterisk.

Metrics Session Mean Value p-value Comparison
±std.dev to Session 1

WPM
1 11.76±1.4

0.000*
-

2 14.04±1.19 +19.41%
3 17.73±1.5 +50.82%

TER
1 7.52%±5.16%

0.970
-

2 7.90%±9.91% +4.98%
3 7.49%±12.11% �0.49%

NCER
1 0.64%±0.46%

0.053
-

2 0.44%±0.31% �31.24%
3 0.30%±0.36% �52.90%

On the basis of the WPM and error rates, we can conclude that
CrossKeys is highly efficient while having a relatively low not corrected
error rate. At the same time, according to the trend of the data, our
method also has good learnability, and if it takes a few more days of
learning, it is likely to achieve higher input speed.

5.3 Task 2: Fatigue Test
We designed three conditions as follows to fully evaluate the user ex-
perience when intensely using our CrossKeys for a prolonged time by
recording and analyzing the participants’ continuous task loads.
CCCCCC The participants would enter phrases randomly generated from the
MacKenzie Phrase Set for two consecutive minutes.
EC1EC1EC1 The participants would enter phrases generated the same way as
CC, for six consecutive minutes.
EC2EC2EC2 The participants would enter phrases generated the same way as
CC, for ten consecutive minutes.
Procedure The entire experiment was conducted using a within-subject
design. The participants had 45 minutes to learn about the input method
and try to enter phrases as practice. Every time they finished one test of
three, they would need to finish the SSQ and NASA-TLX test for their
current feelings. Participants may rest for any length of time between
tests, so that the interval between each experiment was sufficient to as-
sure that participants could avoid motion sickness from growing worse
with the length of time using the VR device, which in turn would affect
the results of the experiment.
Analytical Method We employed a one-way repeated measures
ANOVA with Duration(2min, 6min, 10min) as the within-subject vari-
able. Greenhouse-Geisser adjustment was employed for degrees of
freedom for violations to sphericity. LSD correction was employed for
post-hoc pairwise comparisons.
Results and Discussion Table 4 shows the mean WPM, TER and
NCER in task 2. In terms of WPM, EC1’s data is down 6.97% com-
pared to CC’s data, and EC2’s data is down 0.3% compared to EC1’s
data. The ANOVA doesn’t show any significant effect of Session on
WPM (F1.254,18.808 = 1.146, p = .313). The decrease of the data was
probably caused by a certain degree of fatigue of the participants, but
the ANOVA indicates that such decrease was not severe.This may indi-
cate that the present input method has relatively good fatigue resistance.
In terms of error rates, the ANOVA reveals a significant effect of Dura-
tion on TER (F2,30 = 3.608, p = .039). The EC1 data (M = 15.90%,
SD = 9.41%) are up 30.33% from the CC (M = 12.20%,SD = 7.53%)
data, and the EC2 data (M = 16.07%,SD = 6.60%) are up 1.07% from
the EC1 data. Post-hoc pairwise comparisons showed that the TER of
EC1 was significantly (p = .025) higher than that of CC , and there is
no significant difference (p = .928) between TERs of EC1 and EC2.
The ANOVA didn’t show any significant effect of Duration on NCER
(F2,30 = 1.677, p = .204). There could be two reasons for the in-
creasing TER under the three conditions. The first one is similar to
the explanation in Task 1, which participants sacrificed TER for better
WPM in some cases. Moreover, NCER remains relatively stable at a
low level, indicating that the TER is indeed largely due to the increase
in CER(corrected error rate) caused by the participants’ modification
of their input. Another reason was that participants were affected by
fatigue, which resulted in a certain number of times when the wrong

Table 4. Average WPM, TER, NCER in Task 2. Statistical significance is
denoted with an asterisk.

Metrics Condition Mean Value p-value±std.dev

WPM
CC 10.48±3.00

0.313EC1 9.75±2.21
EC2 9.72±2.17

TER
CC 12.20%±7.53%

0.012*EC1 15.90%±9.41%
EC2 16.07%±6.60%

NCER
CC 2.90%±5.56%

0.339EC1 5.22%±5.83%
EC2 2.83%±2.28%

letter or candidate word was chosen.
Table 5 shows the SSQ ratings for Oculomotor (O), Nausea (N),

Disorientation (D), and Total Severity (TS) and Fig. 8 shows the
mean workload scores under the NASA-TLX test. The ANOVA
shows that there is no significant effect of Duration on N (F2,30 =
1.364, p = .271). The ANOVA reveals a significant effect on O
(F2,30 = 7.107, p = .003), D (F1.398,20.974 = 5.225, p = .023)
and TS (F1.46,21.901 = 6.504, p = .011). Post-hoc pairwise com-
parisons show that all data(including O,D,TS)of EC2 are respectively
significantly higher than those of CC and EC1, and the LSD compar-
ison p-values were shown on Table 4. Although the rise in EC2 may
indicate that the participants didn’t feel comfortable under EC2, the
actual scores of these three items are still maintained at a very low
level, with the highest one being O in EC2, reaching only 30.79. No
significant effect was shown between CC and EC1 in four items, as
is shown on Table 6. and there was a decrease in O and TS from CC
to EC1. This may show that the participants felt it more comfortable
to enter phrases for around 6 minutes. As for the NASA-TLX test,
the workload fractions of CC,EC1,EC2 showed a slowly increasing
trend, but the ANOVA yielded no significant effect of Duration on
workload(F2,30 = 2.749, p = .080). This indicates that the increase
in workload caused by prolonged use of CrossKeys is not severe and is
acceptable.

Fig. 7. The average workload of three status(short, longer and prolonged).
Error bars indicate ± 1 standard deviation.

According to objective metrics, CrossKeys has good usability in
relatively long continuous input, i.e., it maintains stable input efficiency
and error rates, indicating that it has a certain degree of fatigue resis-
tance. According to subjective metrics, CrossKeys can maintain a low
level of workload; when combined with SSQ feedback, the optimal
time of our method under the condition of keeping people comfortable
for longer input time is six minutes to ten minutes.

5.4 Task 3: Evaluation of In-motion Performance
During the study of in-motion performance, we employed a treadmill
to simulate daily walking; to ensure safety, as shown in Fig.7 we also
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Table 5. Statistics of Simulator Sickness ratings in terms of Oculomotor
(O), Nausea (N), Disorientation (D), and Total Severity (TS). Statistical
significance is denoted with an asterisk.

Metrics Conditon Mean Value p-value p-value compared
±std.dev to EC2

N
CC 7.75±11.67

0.271
0.216

EC1 7.75±9.36 0.164
EC2 10.14±13.25 -

O
CC 17.06±20.43

0.003*
0.009⇤

EC1 18.00±14.87 0.000⇤
EC2 30.79±20.98 -

D
CC 9.57±20.78

0.023*
0.066

EC1 7.83±19.00 0.001⇤
EC2 18.27±22.57 -

TS
CC 5.63±8.63

0.011*
0.024

EC1 5.29±7.35 0.000⇤
EC2 10.03±8.92 -

Table 6. P-values of SSQ scores comparing CC with EC1 in Task 2.

Metrics N O D TS
p-value 1.000 0.837 0.609 0.831

embodied the walking path into the virtual environment and set it to
the same speed so that the participants would feel more directed and
natural while walking on a treadmill. Also, participants were required
to hold one hand on a side of the treadmill’s handles and try to make
sure that their arms are on the same plane with their bodies so that
they would prevent slipping out of the treadmill or falling down. We
designed two conditions as follows.
CCCCCC The participants stand still on a power-off treadmill and enter ten
phrases randomly selected from the MacKenzie Phrase Set.
ECECEC The participants enter ten phrases generated the same way as CC,
only under this condition they will be walking on power-on treadmill
of a daily walking speed (1.6 m/s).
Procedure The entire experiment was conducted complying to a within-
subject design. Participants were given 45 minutes to review the use of
CrossKeys and practice it to be as proficient as possible. In addition,
they would also use this time to familiarize themselves with the tread-
mill. Between the training period and sessions, participants would have
enough time to rest until they are relaxed and ready. In Session 1(CC),
the participants need to stand on the stationary treadmill and enter
ten sets of phrases which are randomly generated from the Mackenzie
PhraseSet. In Session 2(EC), they need to walk on the treadmill running
at 1.6 meters per second and enter ten phrases the same way as they did
in CC. After each session, the participants would be asked to fill the
NASA-TLX form to record their subjective evaluation of a myriad of
task loads.
Analytical Method We employed a Paired T-test with Status(Stationary,
in-motion) as the within-subject variable. Shapiro-Wilk Test is em-
ployed for testing the normal distribution of the data.
Results and Discussion Table 7 shows the mean WPM, TER and
NCER in task 3. The T-tests shows that there is no big significant effect
of Status on WPM (t = 0.150, p = .916, Cohen0s d = 0.01),
TER (t = 0.190, p = .894, Cohen0s d = 0.02) or NCER
(t = �0.606, p = .546, Cohen0s d = 0.14). The WPM of EC
decreased by 0.297% compared to that of CC. NCER in EC increased
by 24.501% compared to CC. The decline in WPM was predictable,
as it is likely that participants in the walking state would not be able
to fully focus on entering phrases, and the decline in WPM of EC was
not significant, suggesting that CrossKeys still retains good usability in
the walking state. The increase in NCER may be due to the fact that
in the walking state, subjects do not put the same degree of attention
on whether their input is consistent with the requested phrase as in the
stationary state. Also, although the rise in NCER was great seemingly,
the mean NCER of EC was actually only 1.29%, which is still at a low
level and not significantly different from NCER of CC.This means that

(a) The scene of one partic-
ipant typing and walking on
a treadmill.

(b) The virtual environment during the study of
in-motion performance, where a walking path is
embodied to ensure participants feel directed and
natural while walking on a treadmill.

Fig. 8. 3rd(a) and 1st (b) person view of typing using CrossKeys on a
treadmill during Task 3: Evaluation of In-motion Performance.

Table 7. Average WPM, TER, NCER in Task 3.

Metrics Conditon Mean Value p-value Cohen’s d±std.dev

WPM
CC 17.42±3.92

0.916 0.01
EC 17.37±3.73

TER
CC 7.80%±7.91%

0.894 0.02
EC 7.64%±7.15%

NCER
CC 1.03%±3.93%

0.546 0.14
EC 1.29%±3.12%

CrossKeys also maintains a low NCER in the walking state.
Fig. 9 shows the mean workload scores under the NASA-TLX

test.The mean workload of EC is 3.92% higher than that of CC. The T-
test shows that such difference is significant(t = �2.178, p = .046),
and the p-value is relatively close to the threshold 0.05. By checking
the scores for each option in the questionnaire, we found that the main
reason for the high scores in EC was that participants generally scored
higher for PHYSICAL DEMAND than CC. The main source of the
high scores for this item may be the slight increase in physical burden
that participants experienced while walking.

Based on subjective and objective metrics, we can conclude that
CrossKeys has good usability in non-stationary situations, i.e., it guar-
antees input efficiency and low error rates in motion situations, while
the slight increase the workload is mainly from motion, not our input
method.

Fig. 9. The average workload of two status (Staitionary and In-motion).
Error bars indicate ± 1 standard deviation.
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6 CONCLUSION

We introduce CrossKeys, a novel, efficient, and handy text entry tech-
nique for VR using a single controller via wrist rotation. To perform
better, apart from the support of auto-completion prediction, we design
a cross-like layout to minimize the average distance of spatial displace-
ment when selecting characters. CrossKeys breaks the boundary set by
two-dimensional mapping of characters and innovatively employs the
three-dimensional space a virtual environment provides, with which
text entry could perform much better. We refine our design with two
pilot studies focusing on keyboard layout and the function of highlight-
ing. Afterward, during the user study, we evaluate our CrossKeys based
mainly on two criteria: efficiency, task load, and three tasks: learn-
ability and performance test, fatigue test, and evaluation of in-motion
performance.

The results of our fastidiously designed pilot and user studies out-
comes well and demonstrates that our CrossKeys outperforms the state-
of-the-art method with an average WPM of 17.73 and an error rate
(NCER) of 0.30% along with a low task load according to the data
collected from the participants after only about 2 hours of training. We
also unprecedentedly make text entry in VR possible when in moderate
motion like walking, making there could be a wider application of our
CrossKeys.

However, this research has a number of limitations and some room
to be refined with greater expertise, suggesting new directions for future
work:

1. The currently believed best layout is selected from a relatively
small amount, which indicates that there might be other layouts of
higher efficiency to be found, considering for a number of people,
the current alphabetic layout is still not so easy to remember and
learn.

2. From an ergonomics perspective, users whose dominant hand
is on their right still feel quite unnatural when reaching for the
blocks behind and on the most right; likewise, for users whose
dominant hand in on their left, they also feel the same discomfort
when reaching for the blocks behind and on the most left.

3. The current model of CrossKeys is based on a rationale that every
two adjacent character blocks has the same distance. Honestly
speaking, the notion is quite plain and simple and based only
on five lab members’ trial experience, so there could be a better
solution for our CrossKeys to the arrange of character blocks that
makes them not necessarily have to be equally distanced.

In conclusion, CrossKeys is a text entry method for VR based on
wrist rotation and only a single controller is needed to fully manip-
ulate, making interactions with a decent low-load user experience
possible while typing. Even with limitations, the promising future of
CrossKeys can hardly be overshadowed. CrossKeys is efficient and
portable enough to be utilized in various scenarios in virtual environ-
ments.
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