GSHOI Denoiser: Denoising Gaussian
Hand-Object Interaction for Photorealistic Rendering

Lizhi Zhao

Beihang University

Xuequan Lu
The University of
Western Australia

Pose Tracking

User Input Pose
I '|
MANUS+GEARS MANUS+GeneOH

Bin Hu

Beihang University

Noisy Driven Pose

Wei Ke Lili Wang *
Macao Polytechnic Beihang University
University

Animate
Hand Gaussians

Noisy HOI Rendering

;

2DGS+GeneOH  GSHOI Denoiser (Ours)

Figure 1: Top: Given a user’s mid-air hand pose, the Leap Motion tracker provides a coarsely estimated, noisy driven pose, which
animates the pretrained hand Gaussians to produce an hand-object interaction (HOI) rendering with penetration and unstable-
grasp artifacts. Bottom: We compare our method with HOI rendering and denoising methods, including MANUS+GEARS [15,
29], MANUS+GeneOH [11], and 2DGS+GeneOH [5]. The renderings of MANUS+GEARS and MANUS+GeneOH contain
severe penetrations. 2DGS+GeneOH involves a gap between the finger and object and thus lacks stability. Our GSHOI Denoiser
effectively removes input noise and accurately poses fingers on the object surface, enabling photorealistic HOI rendering.

ABSTRACT

Many VR/AR applications require the photorealistic rendering of
hand-object interactions. Virtual hands are driven by users’ hand
poses captured via motion tracking to interact with virtual ob-
jects. The driven pose can be very noisy due to the constraints
of tracking hardware and computation accuracy. This noise may
lead to distorted hand poses and penetration artifacts during ren-
dering. In this paper, we introduce the Gaussian Hand-Object In-
teraction Denoiser, the Gaussian splatting-based hand-object in-
teraction denoising method, which effectively denoises the input
twisted and penetrated hand poses to produce photorealistic re-
sults. We first propose the innovative joint-to-Gaussian surface
representation, which accurately models the spatial relationships
between hand skeleton joints and object Gaussians while high-
lighting hand-object penetrations and generalizing well to new
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hand poses and objects. Then, we propose a geometry-aware
de-penetration algorithm that eliminates penetrations by detect-
ing intersections between skeleton bones and object Gaussians
and reposing any penetrated fingers onto the estimated underlying
surface of the object. Experiments demonstrate that our method
not only effectively reduces hand—object penetration depth but
also produces more realistic rendering quality compared to the
state-of-the-art methods MANUS+GEARS, MANUS+GeneOH,
and 2DGS+GeneOH. The user study results show that our
method significantly improves the users’ visual perceptual expe-
rience regarding penetration and stability metrics. Project page:
https://github.com/Zhaolizz/GSHOIDenoiser

Index Terms: Virtual Reality, Gaussian Splatting, Hand-Object
Interaction

1 INTRODUCTION

Hand-object interaction is common in daily life and plays a crucial
role in AR/VR applications. Typically, virtual hands are driven by
users’ real hand poses, captured through 3D motion tracking tech-
nologies to interact with the virtual objects. However, due to the
accuracy limitations of tracking hardware and computation, motion
capture results often contain noise, leading to distorted hand poses
and undesired HOI penetrations [11].

Researchers have proposed denoising techniques to address er-
roneous motion tracking results and enhance HOI plausibility. Liu
et al. introduced GeneOH [11], which takes a sequence of noisy
hand skeletons and object mesh as inputs, then models HOI rela-
tion as the distance between joints and object vertices, and outputs
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denoised hand skeletons via a diffusion model. GeneOH achieves
promising denoising results, but it lacks the capability to recon-
struct and render photorealistic HOI appearances. Pokhariya et al.
proposed MANUS [15], a Gaussian splatting-based HOI rendering
method that can reconstruct rigid objects and animatable hands and
render photorealistic HOI images. Nevertheless, MANUS cannot
perceive the relationships between hand and object Gaussians, and
therefore, cannot denoise erroneous pose inputs. Instead, it relies on
accurate hand poses captured from a high-end camera array, which
are not accessible to typical AR/VR applications. It is non-trivial
to apply GeneOH on MANUS properly as Gaussian representation
differs greatly from the mesh data. The mesh vertices lie accurately
on the surface, while Gaussians are coarsely distributed around the
underlying surface. As a result, hand denoising for Gaussian-based
HOI presents special challenges, in particular: 1) How to design
a representation to model the accurate spatial relations between
the hand skeleton joints and the coarsely distributed object Gaus-
sians? 2) How to estimate and further eliminate penetrations be-
tween Gaussian-based hands and objects?

In this paper, we propose the Gaussian Hand-Object Interaction
Denoiser (GSHOI Denoiser), a Gaussian splatting-based HOI de-
noising framework, that addresses the aforementioned challenges.
Our method is capable of denoising the input twisted hand poses
and HOI penetrations, generating photorealistic HOI renderings.
Our method involves two key innovative components. Firstly,
we propose the Joint-to-Gaussian Surface (J2GS) representation,
which can model the accurate spatial relations between hand skele-
ton joints and object Gaussians, highlight HOI penetrations, and
generalize well to new hand poses and new object Gaussians,
by splatting the coarsely distributed object Gaussians onto skele-
ton joints as smooth local surfaces. Secondly, we propose the
Geometry-aware De-penetration (GDP) algorithm to eliminate the
HOI penetrations, by estimating the intersected geometries of skele-
ton bones and object Gaussians, and reposing any penetrated fingers
on the underlying surface of object Gaussians.

We compare our GSHOI Denoiser with state-of-the-art
(SOTA) HOI rendering and denoising methods MANUS+GEARS,
MANUS+GeneOH, and 2DGS+GeneOH on MANUS-Grasp
dataset. The experimental results demonstrate that our method not
only reduces hand-object penetration depth by 57.3%, but also pro-
duces more realistic rendering quality, improving 8.3% in Peak
Signal-to-Noise Ratio (PSNR), reducing 17.4% in Learned Percep-
tual Image Patch Similarity (LPIPS). Fig. 1 shows the comparison
of renderings between our method and SOTA methods, showcasing
notable improvement in penetration and grasp stability.

To summarize, our technical contributions are as follows:

¢ We introduce GSHOI Denoiser, the first 3D Gaussian HOI
rendering denoising framework that denoises the input twisted
hand poses and HOI penetrations, and produces photorealistic
renderings of hand object interaction.

We present a novel HOI representation of joint-to-Gaussian
surface, which captures the accurate HOI spatial relationships
by splatting the coarsely distributed object Gaussians onto
skeleton joints as smooth local surfaces.

We propose a novel geometry-aware de-penetration method to
eliminate the HOI penetrations, by estimating the intersected
geometries between skeleton bones and object Gaussians, and
reposing penetrated fingers onto the underlying surface of ob-
ject Gaussians.

2 RELATED WORK

In this section, we introduce recent hand object interaction recon-
struction and denoising methods related to our approach.

2.1 Hand Object Interaction Reconstruction

Hand-Object Interaction reconstruction aims to estimate the pose
and/or reconstruct the geometries of objects and articulated hands
from input images [23, 4, 10, 12]. Yang et al. proposed the Contact
Potential Field (CPF) [21], which models the HOI relation using
a spring-mass system to estimate the poses of pre-scanned objects
and MANO hands [18] from images. Additionally, Yang et al. in-
troduced ArtiBoost [20], an online HOI synthesis method designed
to enhance the diversity of the HOI dataset. Recent approaches fo-
cus on reconstructing HOI meshes without relying on pre-scanned
object and hand templates. Fan et al. presented HOLD [2], a
category-agnostic method that reconstructs the geometry of both
unknown hands and objects through a compositional articulated im-
plicit model. Ye et al. proposed a diffusion network to recover
the neural 3D representation of object shapes and the time-varying
motion of hand articulation for HOI reconstruction [23]. Further-
more, Ye et al. introduced G-HOP [22], a diffusion-based genera-
tive prior for HOI reconstruction, which represents the hand using
a skeleton distance field and aligns it with the learned object signed
distance field (SDF). In addition to 3D-aware approaches, Ye et al.
introduced Affordance Diffusion [24], a large-scale 2D diffusion
model that generates HOI images with diverse backgrounds based
on coarse hand-grasping layout conditions. However, Affordance
Diffusion lacks precise pose control over synthesized hand poses.
HO-NeRF [16] models the hand and object appearance with neural
radiance fields [13]. These methods reconstruct high-fidelity HOI
from captured grasp images. However, their reliance on such im-
age inputs restricts applicability in scenarios in which users’ phys-
ical hands interact with virtual objects. In this paper, we focus on
generating plausible HOI without the captured grasp image.

Gaussian splatting exhibits a new 3D representation for recon-
struction and rendering [8, 5, 1, 26, 1]. Zhao et al. proposed Gaus-
sianHand [26], which employs 3D Gaussian splatting [8] to recon-
struct an animatable hand avatar with realistic appearance render-
ing capabilities. Pokhariya et al. introduced MANUS [15], which
pioneers HOI appearance reconstruction by representing the hand
using articulated Gaussians and the object with static Gaussians.
Simply concatenating the hand and object Gaussians enables the
rendering of both HOI and contact areas.

Previous Gaussian-based hand object reconstruction and render-
ing methods assume input accurate driven poses, while can not de-
noise erroneous poses. In this paper, we propose the GSHOI De-
noiser, achieving both high-quality HOI rendering and denoising.

2.2 Hand Object Interaction Denoising

HOI pose estimation methods often involve erroneous interaction
noise [14, 25, 27, 31], including hand twisting and penetration, etc.
HOI Denoising aims to understand the 3D scene and remove the
noise to produce a perceptually realistic sequence [32, 30, 6, 7].
Zhou et al. proposed TOCH [28], a spatio-temporal representation
modeling the ray-casting relation between hands and objects for re-
fining incorrect mesh-based HOI sequences. Zhou et al. further
proposed GEARS [29] to denoise the HOI sequence by attaching
bounding boxes on hand joints to query the neighborhood object
surface vertices and extracting the object’s local geometry features
with a spatio-temporal network. Liu et al. proposed GeneOH [11],
a contact-centric HOI denoising method that learns the manifold
of Euclidean distance and trajectory consistency representation of
HOI sequence with a diffusion model, which can denoise the input
noisy sequences by first diffusing them to a whitened noise space
and then cleaning the HOI sequence via the trained denoiser. Both
methods focus on mesh geometry only, neglecting HOI appear-
ance modeling. Previous HOI denoising methods work well for
hands and objects meshes but do not consider realistic rendering.
Adapting these methods for Gaussian-based HOI rendering is non-
trivial because mesh vertices lie precisely on thin surfaces, whereas



Gaussians are coarsely distributed around an underlying surface. In
this paper, we aim HOI denoising for Gaussian splatting rendering.

3 METHOD
3.1 The Pipeline of GSHOI Denoiser

We formulate the Gaussian HOI rendering denoising problem as
follows. Given the pretrained Gaussians of a rigid object, and a se-
quence of twisted penetrated driven hand poses in object’s canon-
ical coordinate frame, along with pretrained skeleton articulated
hand Gaussians, we aim to denoise the hand pose sequence without
accessing ground truth (GT) images to achieve clean hand poses,
and render photorealistic HOI images from arbitrary view as:

0¢ = Denoiser (Go, Gn(05)),

. 1

Iy = Splat (cat(go,gh(é?f)),v) , W
where G, is the rigid object Gaussians, Gp(-) is articulated
hand Gaussians, 6 is the f-frame noisy input pose parameters,
Denoiser is a HOI denoising function, éf denotes the f-frame
cleaned pose parameters. v is an arbitrary viewpoint, and cat(-, )
denotes the concatenation operator, Splat denotes the Gaussian
splatting rendering function.

Fig 2 shows the pipeline of our GSHOI Denoiser, which in-
cludes 4 steps: HOI Gaussian initialization, constructing the joint-
to-Gaussian surface representation to capture the accurate HOI spa-
tial relationships (Section 3.2), hand pose denoising with the diffu-
sion model, and using the geometry-aware de-penetration method
to estimate and eliminate HOI penetrations (Section 3.3).

First, we initialize the hand and object Gaussians. We use the
2D Gaussians [5] to represent objects and hands. The rigid object
Gaussians can be easily trained from multi-view object images with
camera viewpoint annotations. For hand Gaussians, we first initial-
ize the Gaussians on the registered canonical MANO [18] surface
and pre-compute the skinning weights of MANO as a spatial weight
volume, which stores the interpolated skinning weights of arbitrary
query points. Given an annotated hand pose, we use the rigid kine-
matic chain to calculate bone transformations and then animate the
canonical hand Gaussians to the posed space by:

B(0) = {Bi}i=1...n;,

, i) . . 2)
x), = <Z wmznm) z,
k=1
where 6 is the driven hand pose, B(-) denotes ns transformations
and B; € SE(3) denotes transforming the i-th joint from the
canonical frame to the posed frame. W(-) is the skinning weights
volume, z%, € R® denotes position property of the i-th Gaussian of
G, and m; denotes the position of the i-th Gaussian in the posed
space. W(z%)x € R denotes the skinning weights at position z°
of the k-th joint. The posed hand Gaussians are then rendered and
trained with GT images.

Second, given pretrained hand and object Gaussians and noisy
hand poses, we construct our proposed joint-to-Gaussian surface
representation to depict HOI spatial relations.

Third, we apply a diffusion model [11] to achieve denoised hand
skeleton joints from the noisy joint-to-Gaussian surface represen-
tation. Specifically, in the training phase, the diffusion model first
diffuses the clean HOI representation to a whitened noisy space by
gradually adding noise to it. Then the diffusion model learns a de-
noiser network to predict the added noise to project it back to the
clean space. The denoiser network is trained with a regression loss
to minimize the difference between the added and predicted noise.

In the inference phase, we input our HOI representation of the
noisy input poses and pass it through the denoiser network. The net-
work eliminates the noise step-by-step to output the denoised hand

skeleton joints sequence, which acts as the supervision to optimize
the noisy hand poses. We regress skeleton joints from the hand
Gaussians in a simple yet effective manner. We assign each canon-
ical MANO vertex a region ID [21]. Then, each canonical hand
Gaussian x. is assigned a region ID based on the nearest MANO
vertex, dividing the hand Gaussians into 17 anatomical parts. Since
the parts are organized hierarchically, we select 10% of each part’s
Gaussians that are closest to the part’s parent as adjacencies, and
compute their centers as the corresponding skeleton joint. Finger
tip joints are defined as the centers of the farthest adjacencies. For
the carpal and thumb metacarpal joints, we use the center of the
full part. The palm metacarpal joint is discarded to maintain con-
sistency with the 16 joints of the MANO model. We construct a re-
gression matrix to conduct the canonical joints regression process.
With the calculated skeleton joints of the posed hand Gaussians, we
optimize the noisy hand poses to achieve denoised hand poses as:

Jr =& - Gn(0y).pos,
H?Iargl’%inMSE(jf“]f), &)
f

where 6 is the f-frame noisy hand pose, £ € R™*'% denotes
the joints regression matrix and ny, is the number of hand Gaus-
sians. pos denotes the position property of Gaussians, Jy is re-
gressed joints of posed hand Gaussians. M SE is the mean square
error loss, J is the f-frame denoised hand skeleton joints from the
diffusion model, and 9? is the optimized denoised hand pose.

Fourth, we propose the Geometry-aware De-penetration method
to further eliminate the HOI penetrations and render the hand object
Gaussians as photorealistic HOI images.

3.2 Joint-to-Gaussian Surface Representation

We present joint-to-Gaussian surface representation to model the
accurate spatial relations between hand skeleton joints and the dis-
crete coarsely distributed object Gaussians, while highlighting the
HOI spatial penetrations.

Our key insight behind achieving the above goals is to splat the
discrete object Gaussians onto hand skeleton joints as sample points
on underlying smooth local surfaces and construct the relative spa-
tial vectors between skeleton joints and the sample points. We for-
mulate our J2GS representation R as:

R(T,Go, A) =T — unproject(Splat"l(gmV),V)7 )

where V denotes the set of our proposed joint cameras, Splat® de-
notes the Gaussian depth rendering function, unproject(-,-) de-
notes the screen-to-world transformation depending on cameras V,
and A denotes a Gausaian subset named anchors. We will detail the
design of our J2GS below.

Given hand skeleton joints sequence and object Gaussians, we
begin constructing our J2GS representation by randomly selecting
some object Gaussians as anchors from the subset of Gaussians that
are close to the hand skeleton trajectory within a threshold as:

A = select(]|Go — U(T)||2 < te, Go).shuf fle()[: na],  (5)

where J denote the joints sequence, n, is the number of anchors,
A = {a;}i=1...n, denote the anchors, t. = 10 mm is the distance
threshold. select(:,-) denotes the conditional selection operator,
with the condition and choice list as inputs, || - ||2 denotes the Eu-
clidean distance, U(7) denotes the union of hand skeletons across
f-frames as the temporal trajectory, and shu f fle()[: nq] randomly
select n, Gaussians.

Then, we propose the joint cameras to capture the local underly-
ing surfaces around the anchors. We attach the n, cameras with a
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Figure 2: The pipeline of our GSHOI Denoiser method. Constructing J2GS: Disks denote object Gaussians, with anchors colored in red.

Joint cameras are attached to the skeleton and oriented to look at the anchors.

Depth maps are rendered and unprojected as underlying

surface sample points (visualized as blue spheres). Hand Pose Denoising: Skeleton regression calculates the skeleton joints from posed hand
Gaussians. We optimize the driven pose supervised by the denoised skeleton from the diffusion Model. GDP: The color bar denotes the
estimated skeleton bone penetration depth. To eliminate penetration, we optimize the z-axis Euler angles from the root to the tip bones.

very small field of view (FoV) on each joint and set the extrinsic of
each camera to look at a corresponding anchor as:

camera(po,p1) = lookat(()po,pl) } Po

anverse(), (6)

where lookat(po,p1) returns the rotation matrix that orients the
z-axis forward from po to p1, and inverse() returns the inverse
matrix. Therefore, the camera(po, p1) function returns the extrin-
sic matrix for positioning the camera at pg and orienting it with the
z-axis pointing toward p; .

Our joint cameras are denoted as:

k
v,k = camera(Jy, a;.pos),

@)
V= {Vsik}f=t..Fi=1...

ng,k=1...n;,

where F' denotes the frame length of the joints sequence.

Next, we estimate the object’s local underlying surfaces near
each anchor and construct the spatial vectors as our J2GS repre-
sentation. As shown in Eq. 4, we splat object Gaussians onto each
joint camera to create local depth maps, where each pixel reflects
the Euclidean distance between a joint and a sample point on the
continuous underlying surface of object Gaussians near an anchor.
We then unproject each pixel to the world coordinate and construct
the spatial vectors pointing from sample points to joints, forming
our J2GS representation.

In detail, the shape of our J2GS represetation is R €
RUXnaxn)x(hxw)x3 \where h,w denotes the height and width
of the depth maps. We also define the J2GS distance as the norm of
J2GS representation averaged across the A X w dimension as:

D(R) = |R||2.mean(dim = 1) € RF*maxm) —(g)

where D is the J2GS distance, and mean(-) is the average function
along a given dimension.

(a) Side View (b) See-through Top View

Figure 3: Visualization of our J2GS representation. Yellow spheres
and cyan cylinders represent hand skeleton joints and bones, respec-
tively. Blue spheres denote the underlying surface sample points.
Disks are 2D Gaussians, where red disks are anchors. The semi-
transparent gray silhouette represents the object’s GT mesh surface.

Fig. 3(a) shows the visualization of our J2GS representation.
The skeleton joints and bones of a penetrated driven pose are ren-
dered as yellow spheres and cyan cylinders. We render the object
Gaussians as disks with each Gaussian’s position, rotation, scale,
and color property. For each anchor, we enlarge the scale prop-
erty by and set red color for visualization clarity. The blue spheres
denote our sample points on the underlying surface of object Gaus-
sians around each anchor. We also render the object’s GT mesh as
a semi-transparent gray silhouette. Fig. 3(b) are the same scene of
3(a) rendered in see-through mode by setting a larger near clipping
plane to reveal the interior of the GT mesh. These visualizations
confirm two key findings. 1) Most Gaussians, including anchors,
lie inside the GT surface coarsely. Simply using spatial vectors



pointing from the position of anchor Guassians to the joints leads
to a penetrated and coarse HOI representation. 2) Our underlying
surface sample points, which are sampled by splatting the coarse
Gaussians on joint cameras, lie on or near the GT surface around
the anchors. Based on these sample points, our J2GS representation
can model the accurate spatial HOI relations.
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Figure 4: Relationship between a query point’s SDF and its distance
to an anchor. We sample query points on a ray passing the interior
and exterior of the object. For each point we compute its SDF value
to the GT mesh, and its Eculidean and J2GS distance to an anchor.

To verity that our J2GS representation can highlight the HOI spa-
tial penetrations, we select query points along the normal direction
of a random vertex of the GT mesh. We then compute both the Eu-
clidean and our J2GS distance to a randomly selected anchor. Fig-
ure 4 illustrates the relationship between each query point’s SDF
value and its Euclidean or J2GS distance to the anchor. The Eu-
clidean distance remains continuous for points both outside (SDF
> 0) and inside (SDF < 0) the GT mesh. In contrast, our J2GS dis-
tance exhibits a clear distribution discrepancy between the external
and internal regions. This discrepancy stems from the fact that the
object Gaussians are trained using outside-in camera setups, which
maintain correct Gaussian depth rendering only when the camera is
positioned roughly outside the GT surface and shows coarser sur-
face estimation results within the interior. The external and inter-
nal distance distribution discrepancy confirms that our J2GS repre-
sentation effectively highlights HOI spatial penetrations, benefiting
the diffusion model in denoising penetrated hand skeleton joints.
Moreover, using a mesh proxy of object Gaussians is not suitable
for HOI representation since extracting a mesh from Gaussians via
marching cubes inevitably introduces reconstruction errors, causing
misalignment between the mesh proxy and the underlying surface
of Gaussians. As a result, the denoised HOI that appears accurate
on mesh can still produce noisy renderings. Our method uses a
unified representation for both rendering and geometric denoising.

3.3 Geometry-aware De-penetration

We propose the Geometry-aware de-penetration algorithm to first
estimate the penetrated geometries of HOI, then repose the pen-
etrated fingers appropriately on the underlying surface of object
Gaussians. As shown in Algorithm 1, our GDP algorithm takes the
f-th frame denoised hand pose 6?, the object Gaussians G,, and a
rendering viewpoint v as inputs, and outputs the de-penetrated hand
pose éf and corresponding HOI image ;. We first initialize the
optimizable hand pose 6 + and its corresponding skeleton joints J ts
and decompose [21] the hand pose as the Euler angles W € R'**?
of 15 skeleton bones to control the fingers more intuitively (Lines
1-2). Next, we estimate and eliminate the penetrations of 5 fingers
(Lines 3-16). For the [-th finger, we take 3 bones’ Euler angles
from ¥ + and estimate each bone’s penetration depth with function
PeneDepth (Lines 4-5). If any bone is penetrated (i.e., d > 0), we
reset the three bones’ Euler z-axis angle as O to flatten the finger
(Lines 6-7). Then, we iteratively increase the z-axis angle for the

Algorithm 1: Geometry-aware De-penetration

Input: denoised pose 0?, object Gaussians G,,, viewpoint v.
Output de-penetrated hand pose 6 . HOI image Iy.
Gf < 0f, Jf < Jf,

-

R15><3.

2 Uy« decompose(fy) € ;
3 forl < 1to5do
4 {wrooty wmith wtip} — \Ilfflnger(l)’
5 {droot, Amid, dtip } < PeneDepth(jf, D
6 it (dyont > 0)[|(dmsa > 0)[|(dssp > 0) then
7 11)7‘0015-27 wmid~27 wtipvz «~0 5
3 while (dyo; > 0)]|(dymia > 0)]|(deip > 0) do
9 wv‘ootvz — wrooth + 62 N
10 {droot7 dmid7 dtip} —
UpdatePD (Vroot -2, Ymid -2, Ytip-2, 1)
11 while (d,,iq > 0)||(dtip > 0) do
12 Vmid-Z < Ymid-z + 0z ;
13 {droot7 dmid7 dtip} —
UpdatepDcwroot-Z, wmi(bZ? wtip-za l),
14 while (d:;, > 0) do
15 Q,thip.Z < Q/Jti,,.z + (Sz 5
16 {d’I‘ODt7 dmid, dtip} —

UpdatePD(wroot-Zy w”VL’id'Z’ wtip-zv l)’
17 05 = compose(Vy);
18 If = Spla,t (Cat(g(u gh(éf))7 U)
19 return 0, I

root Yroot, then update . + and skeleton joints, then update the pen-
etration depth with function UpdatePD until any part of the finger
penetrates (Lines 8-10). This operation poses the root bone from
flatten to bent until HOI contact occurs. We repeat this process for
the middle bone’s angle 1),,:4 until the middle or tip bone pene-
trates, and we do the same for the tip bone (Lines 11-16). Finally,
we compose the optimized Eulers U fas 6 ¢ and render posed hand
Gaussians alongside the object Gaussians to produce the HOI im-
age Iy (Lines 17-19).

Algorithm 2: Penetration Depth Estimation

Input: f-th frame joints J '+, finger index (.
Output: penetration depth of the I-th finger’s bones

1 Function 1:’eneDo_=:p1:h(JAf7 0:

2 J, < Js.finger(l) € R*3 ;

3 €root — J1[2] — Jl[l]; Vroot < camera(J;[2],J;[1]);
4 €mid < Ji[3] — J1[2]; Vinid camera( 13 } Ji12]);
5 ewip < Ji[4] — Ji[3]; Viip < camera(J;[4], J:[3];

6 droot +~D (Splat (go7v'r00t7 |eroot|| ))7
7 dmzd +D (Splat (go»vmzah Hemz(l” )

8  dup <D (Splat (Go, Vtip, Hen‘sz))»
9 return {d.oot, dimid, dtip };

As shown in Algorithm 2, we define the PeneDepth function to
estimate the penetration depth of the root, middle, and tip bones of
a finger. Given the f-th frame skeleton J + and the finger index [
as inputs, PeneDepth outputs the penetration depth of the [-th fin-
ger’s 3 bones. We first get the finger joints J; (Line 2), and build the
vector of 100t €r.,0¢, middle e.,iq, and tip e:;, bones by connect-
ing each paried joints, and set 3 cameras V,oot, Vmid, Veip along
each bone with Eq. 6 (Lines 3-5). We then render 3 depth maps
{droot, dmid, drip} using the Gaussian depth rendering function



with the far plane clipping as Splatd(g7 v, dfar), Where dfqr de-
notes the distance from the camera to the farplane (Lines 6-8). By
setting the far plane as the length of each bone, we can estimate the
penetration depth of each bone with our proposed J2GS distance in
Eq. 8, since the depth maps are rendered with clipping any Gaus-
sians outside the end of the bone. If no Gaussians are rendered
along the bone, the depth is set to 0.

Algorithm 3 shows the detail of UpdatePD function, which takes
the z-axis Euler angles of 3 bones of the [-th finger as inputs and
outputs the updated penetration depth of the 3 bones. We first up-
date the hand Euler angles’ corresponding values with input (Line
2). Then we compose Y + as hand pose 0 + and calculate the updated
skeleton joints J + of the hand Gaussians (Lines 3-4). Finally, we
compute the penetration depth by the PeneDepth function with J t
and [ as inputs and return the updated results (Line 5).

Algorithm 3: Penetration Depth Updating

Input: z-axis Euler angle of root ¥,¢0t, middle ¥;,;4, and
tip ¢ip bones of the [-th finger.
Output: The updated penetration depth of the 3 bones.
1 Function UpdatePD (Vroot, Ymid, Ytip, 1D
\Pf'finger(l) <_A{'¢)roota d)mida wtip};
0y < compose(Vy);
Jp+—TR- gh(ef).pos 5
return PeneDepth(Jy, 1);

wm s W N

4 EXPERIMENTS
4.1 Experimental Settings

Dataset. We conduct both comparison and ablation studies on the
MANUS-Grasp dataset [15], which provides HOI image sequences
from 38 camera views of 3 subjects and 35 objects, along with per-
frame MANO hand pose annotations. It also includes separately
captured hand and object images for reconstruction use. We use
Subject0 and Subject1 for our experiments. To assess the general-
ization of HOI denoising methods to new objects, we leave grasp
sequences of cube, booksl, fruitsl, colorl, color2, color3, and
color4 as the test set for Subject0, and tech2, colorl, color2, color3,
and color4 as the test set for Subject1; sequences of all other objects
serve as the training set. We retain the final 40 frames of each grasp
sequence in both the training and test sets. We remove the back-
ground of grasp images using SegmentAnything?2 [17] to evaluate
the HOI rendering quality. Objects colorl-4 are provided with GT
contact maps of hands for evaluation.

Metrics. We introduce 8 evaluation metrics. Penetration Depth
(PD) in mm measures HOI penetration by averaging SDF values
of the hand Gaussians located inside the object’s GT mesh. PSNR,
Structural Similarity Index Measure (SSIM), and LPIPS evaluate
the HOI rendering. Finally, mean Intersection over Union (mloU),
F1, and accuracy measures the overlap area, the overall similar-
ity, and the contact classification accuracy between predicted and
T contact maps, respectively. Mean Per-Joint Position Error
(MPJPE) in mm quantifies the average distance between the pre-
dicted and GT skeleton joints [28, 11].

Comparison methods. We compare our GSHOI Denoiser with
the SOTA HOI rendering and denoising methods MANUS [15],
MANUS+GEARS [29], and MANUS+GeneOH [11], as well as
2DGS+GeneOH. As GEARS and GeneOH operate on mesh ver-
tices, we adapt them to Gaussians by treating Gaussian positions
as vertices. MANUS drives the hand Gaussians with a kinematic
chain. We regress the chain parameters from noisy input poses and
denoised poses of GEARS and GeneOH to drive the MANUS hand.

4.2 Implementation Details

Our hands and objects Gaussians are implemented with 2DGS [5].
The diffusion model follows GeneOH [11] exactly. GeneOH pro-
vides a pre-trained checkpoint on the synthetic mesh-based HOI
dataset GRAB [19]. We fine-tune the checkpoint on the MANUS-
Grasp dataset for about 2 hours for both ours and GeneOH on a
single NVIDIA RTX 4090 GPU. We set the HOI sequence length
to 10 frames. We render the depth maps in 32 x 32 resolution. Ren-
dering a batch of 5250 depth maps takes only 0.015 seconds. The
diffusion model consists of 200 iterative steps, each taking 0.02
seconds. The geometry-aware de-penetration converges in about
300 iterations, with each iteration taking around 0.015 seconds. We
perturb each sequence by adding random noise sampled from the
normal distribution on the MANO translation, rotation, and pose
parameters with the standard deviations set to 0.01, 0.05, 0.4, re-
spectively, to set the input MPJPE around 23.0 following GeneOH.
The random perturbations result in not only HOI penetrations but
also unnatural hand poses, unstable grasps, and temporal jitter.

4.3 Results and discussion

Quantitative results. The quantitative comparison between our
GSHOI Denoiser and the SOTA methods on the MANUS-Grasp
dataset for Subject0 and Subjectl is shown in Table 1. For
reference, we include two additional rows: 2DGS+GT Pose,
in which 2DGS of hands and objects are driven by GT pose,
and 2DGS+Input Pose, where the driven pose is the noisy in-
put pose without any denoising. We compare the MANUS,
MANUS+GEARS, MANUS+GeneOH, and 2DGS+GeneOH and
our GSHOI Denoiser in the subsequent rows. As shown in the ta-
ble, our GSHOI Denoiser achieves the highest denoising and ren-
dering quality on almost all metrics. Notably, for the PD metric, our
method is lower than MANUS+GEARS by 2.26 (64.6%) and 0.73
(17.0%), and is lower than MANUS+GeneOH by 6.08 (83.0%)
and 1.64 (31.5%) for SubjectO0 and Subjectl, respectively. Our
method also reduces PD by 1.77 (58.8%) and 0.57 (13.8%) com-
pared to 2DGS+GeneOH, highlighting its effectiveness in elimi-
nating HOI penetrations. Regarding rendering quality, our method
outperforms MANUS+GEARS by 4.63 (22.0%) and 6.59 (41.1%)
in PSNR for SubjectO and Subjectl, respectively, and outperforms
MANUS+GeneOH by 1.41 (5.7%) and 2.23 (10.8%), and improves
2DGS+GeneOH by 0.14 (0.5%) and 0.06 (0.2%), respectively. For
MPIJPE, our approach achieves 8.27 (38.7%) and 16.48 (52.5%)
lower error than MANUS+GEARS on two subjects, and a 0.22
(1.6%) lower error than MANUS+GeneOH and 0.7 (5.0%) than
2DGS+GeneOH on Subject0, demonstrating more faithful skele-
ton motion recovery. However, the MPJPE of our method is 1.43
(9.5%) higher on Subjectl compared with MANUS+GeneOH, be-
cause our GDP method reposes skeleton joints to eliminate pene-
tration, occasionally introducing slight deviations from GT pose.

We present comparisons of contact maps of our GSHOI Denoiser
to MANUS+GeneOH for the MANUS-Grasp dataset in Table 2.
The predicted contact maps are rendered by coloring hand Gaus-
sians that come into contact with objects in white, with non-contact
Gaussians being black. Following MANUS [15], we consider a
hand Gaussian to be in contact if its SDF value to the object’s GT
mesh is below a threshold of 7 = 0.004 at any frame in the trajec-
tory. These results indicate that our GSHOI Denoiser aligns more
closely with the GT contact map than MANUS+GeneOH, outper-
forming it by 0.03 (42.7%), 0.06 (40%), and 4.75 (5.29%) in mloU,
F1, and accuracy on SubjectO, respectively, and by 0.02 (23.0%),
0.035 (23.0%), and 3.00 (3.4%) on Subjectl.

Visualization. The quantitative improvements in the metrics
are also reflected by the visualization results of 2 subjects inter-
acting with 6 new objects out of the training set, as presented
in Fig. 5. We compare our GSHOI Denoiser to MANUS,
MANUS+GEARS, MANUS+GeneOH, and 2DGS+GeneOH. For



Table 1: Quantitative comparisons of our GSHOI Denoiser to SOTA methods on the MANUS-Grasp Dataset.

Method PD| PSNR{T SSIMT LPIPS| MPIPE| | PD| PSNRT SSIM{ LPIPS| MPJPE ]
Subject0 | Subjectl

2DGS+GT Pose 1.69  29.61 0.977 0.034 4.86 213 29.00 0.978 0.038 4.87
2DGS+Input Pose 5.18 2421 0.968 0.054 23.18 597  22.62 0.967 0.062 23.10
MANUS 3.52 235 0.968 0.056 2242 5.73 21.26 0.963 0.070 24.40
MANUS+GEARS 350  21.10 0.963 0.075 21.36 4.29 16.89 0.948 0.113 31.40
MANUS+GeneOH 732 2432 0.968 0.052 13.31 520 2151 0.964 0.066 13.49
2DGS+GeneOH 3.01 2559 0.970 0.046 13.79 4.13  23.78 0.969 0.055 14.68
GSHOI Denoiser (ours) 1.24  25.73 0.971 0.045 13.09 3.56 23.84 0.970 0.054 14.92

reference, we also include 2DGS+GT Pose and the GT image.
We summarize the qualitative improvements of our GSHOI De-
noiser as follows. 1) Penetration: In the first 5 rows, the per-
turbed input poses cause severe HOI penetration, yielding unpleas-
ant renderings from MANUS, which do not consider HOI denois-
ing. MANUS+GEARS tends to produce great gaps between hands
and objects (third and fourth rows). MANUS+GeneOH alleviates
penetration to some degree, but residual penetration still persists.
For instance, the middle finger penetrates the book (first row), the
thumb intersects the bottle (second row), the index finger is em-
bedded in the apple (third row), and multiple fingers penetrate the
bottle and mug (fourth and fifth rows). 2DGS+GeneOH also in-
volves penetrations, as shown in the middle finger (first row), the
little finger (second row), and the ring finger in the fourth row. In
contrast, our GSHOI Denoiser successfully eliminates these pene-
trations by repositioning the fingers on the object surface, result-
ing in more accurate and visually appealing HOI renderings. 2)
Pose twist: In the sixth row, the input pose has a twist posed thumb
and penetrated middle and ring fingers. MANUS+GEARS allevi-
ates the pose twist but also leaves the hand too far from the object.
While MANUS+GeneOH corrects the middle and ring fingers, it
fails to solve the unnatural twist of the thumb. 2DGS+GeneOH re-
moves the twist but lifts the ring finger unnaturally. By contrast,
our GSHOI Denoiser corrects the problematic fingers without in-
terfering with other accurate fingers, avoiding any additional noise.
3) Unstable grasp: The input pose of the last two rows involves dis-
tance noises between fingers and objects, leading to unstable grasp,
as shown by MANUS. MANUS+GEARS fails to move hands near
the objects. MANUS+GeneOH produces over-grasped and over
penetrated poses. For example, the hand grabs the inside of the
mug instead of the outsides (seventh row), and the thumb is placed
far away from the earphones (eighth row). 2DGS+GeneOH results
contain minor penetration, as shown in the index finger in the sev-
enth row and the distance gap of the ring finger in the eighth row.
Our method accurately poses the unstable hands on the objects and
shows great fidelity with the GT Pose.

We summarize the cause of penetration, pose twistion, and un-
stable grasp as follows. GeneOH train diffusion model to learn
the distribution of HOI spatial representations, which are defined
by vectors from the centers of object anchor Gaussians to skele-
ton joints. However, as demonstrated in Fig. 3, the Gaussians
are coarsely distributed inside the object’s GT surface, resulting
in the modeled HOI distances being more extended than that of
GT. Consequently, during inference, given new object Gaussians, if
the selected anchors lie far inside the object surface, the resulting
poses are more likely to penetrate the object. Conversely, if an-
chors are placed too close to the object surface, the resulting hand
pose may appear large distance from the object, leading to unsta-
ble grasps. Furthermore, since Gaussians are randomly distributed,
selecting anchors that produce novel spatial directions can lead to
twisted hand poses. Our GSHOI Denoiser overcomes these limita-
tions by leveraging the proposed J2GS representation, which sam-
ples points on the object’s GT surface, thus making the distribution

of HOI spatial representation uniform across the training and test
set. Our GDP further eliminates penetrations, enabling our method
to achieve higher-fidelity HOI renderings.

Table 2: Quantitative comparisons of our GSHOI Denoiser to
MANUS+GeneOH on the contact maps of MANUS-Grasp Dataset.

Method mloU1T F11  Accuracy (%) T
SubjectO
2DGS+GT Pose 0.147  0.255 94.50
2DGS+Input Pose 0.097  0.172 90.00
MANUS+GeneOH 0.082  0.150 89.75
GSHOI Denoiser (Ours)  0.117  0.210 94.50
Subjectl
2DGS+GT Pose 0.142  0.237 94.00
2DGS+Input Pose 0.087  0.147 86.75
MANUS+GeneOH 0.087  0.152 89.75
GSHOI Denoiser (Ours) 0.107 0.187 92.75

4.4 Ablation Study

We conduct ablation studies on the MANUS-Grasp dataset to eval-
uate the effectiveness of our proposed components, J2GS and GDP.
First, we use the 2DGS using the input noisy pose without denois-
ing methods as our baseline. Second, we apply our J2GS rep-
resentation to construct the HOI relations and train our diffusion
model (J2GS). Third, we conduct experiments with our proposed
GDP without the diffusion model to eliminate penetration (GDP).
Fourth, we compose our J2GS with GDP as our complete GSHOI
Denoiser (J2GS+GDP). Quantitative results are presented in Table
3, and qualitative results are visualized in Fig. 6.

Quantitative results. As shown in Table 3, compared with the
baseline, our J2GS reduces the PD by 1.33 (47.0%) for Subject0
and 1.73 (29.0%) for Subjectl, and improves PSNR by 1.51(6.2%)
and 1.21 (5.3%) repectively. Applying only GDP without a de-
noised pose from the J2GS does not yield strong performance be-
cause GDP supposes an approximately correct input pose and re-
fines only penetrated fingers, verifying the importance of J2GS.
Our complete GSHOI Denoiser (J2GS+GDP) further eliminates
PD over the J2GS by a large margin of 1.59 (56.2%) for SubjectO
and 0.68 (16.0%) for Subjectl, and also achieves the best render-
ing quality in PSNR, SSIM, and LPIPS metrics for both subjects,
showing the effectiveness of the proposed J2GS and GDP. Although
J2GS+GDP increases MPJPE slightly (by 0.05 for Subject0 and
0.36 for Subjectl) relative to J2GS. This increase arises because
GDP reposes penetrated fingers. Though we only optimize the z-
axis of each finger’s Euler angles and fix the x and y-axes to pre-
serve pose consistency, the optimized skeleton joints can still devi-
ate from the GT. Compared with GDP, our J2GS+GDP decreases
PD by 0.26 (17.3%) for Subject0 and 0.14 (3.8%) for Subjectl, and
also increases PSNR by 1.51 (6.2%) and 1.22 (5.4%), respectively.



MANUS
Figure 5: Visual results of MANUS, MANUS+GEARS, MANUS+GeneOH, and our GSHOI Denoiser on MANUS-Grasp Dataset.

MANUS+GEARS MANUS+GeneOH 2DGS+GeneOH GSHOI Denoiser (ours) 2DGS+GT Pose

GT Image

Table 3: Ablation study for our J2GS and GDP components on the MANUS-Grasp dataset.

Method PD| PSNR{ SSIMt LPIPS| MPJPE} | PD] PSNR{ SSIM{ LPIPS| MPJPE |
Subject0 | Subjectl

Baseline 5.18 24.21 0.968 0.054 23.18 5.97 22.62 0.967 0.062 23.10

Baseline+J2GS 2.83 25.72 0.970 0.046 13.04 4.24 23.83 0.970 0.054 14.56

Baseline+GDP 1.50 24.22 0.968 0.054 22.62 3.70 22.62 0.966 0.062 23.49

Baseline+J2GS+GDP  1.24 25.73 0.971 0.045 13.09 3.56 23.84 0.970 0.054 14.92

Visualization. The visualization results in Fig. 6 further demon-
strate the effectiveness of our proposed J2GS and GDP. The com-
parison results can be summarized as follows: 1) Penetration: In
the first row, the input pose exhibits penetration. Our J2GS pro-
duces HOI with cleaner middle finger than the input pose, but the
penetration of the index finger still remains. With the help of GDP,
our J2GS+GDP fully eliminates penetration while preserving the
de-penetrated hand poses similar to the J2GS results. Notably, di-
rectly applying GDP can also remove penetration, but the results
deviate more from the GT Pose. 2) Unstable grasp: In the second
row, the input pose incorporates an unstable grasp pose to the mug.
Using J2GS positions the hand firmly to grasp the mug, resulting
in a configuration closely matching the GT pose, but the index fin-
ger is slightly penetrated. Our J2GS+GDP effectively removes the
penetration artifact. Using only GDP without J2GS eliminates pen-
etration but yields a pose less similar to the GT pose.

4.5 User Study

We conducted a within-subject study to evaluate the visual percep-
tual quality of HOI rendering produced by our GSHOI Denoiser
and MANUS. The visual perceptual quality is measured by two 5-
point Likert-scale subjective metrics of penetration and instability.
Lower scores indicate reduced perceptual HOI rendering noise.

Farticipants and Conditions. We recruited 15 participants (10
males, 5 females) between 20 and 27 years of age. The study in-
cluded two conditions: GSHOI Denoiser and MANUS, both trained
on the MANUS-Grasp dataset.

Task. We use the LeapMotion to capture users’ hand skele-
ton joints and regress them as driven pose parameters. The hand
Gaussians are driven by users’ moving hands and rendered along
with the static object Gaussians in real time. Participants are asked
to grasp the virtual object with their mid-air hand poses and con-
trol the virtual hand to fit the object surface as closely as possi-
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Figure 6: Visual results of ablation study for our J2GS and GDP components on the MANUS-Grasp dataset.
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Figure 7: Statistic results of the user study for scoring the penetra-
tion and grasp stability of our GSHOI Denoiser and the MANUS.
Lower penetration scores and higher stability scores denote a more
plausible user experience with HOI rendering.

ble while avoiding penetration. Each participant experiences both
conditions in a random order. To mitigate the effect of visual fa-
tigue, after completing the first condition, participants are given a
few minutes of rest before proceeding to the following condition.
For the MANUS condition, participants can press a button to pause
the hand tracking and observe the HOI rendering with a fixed hand
pose. For our GSHOI Denoiser condition, when the button is trig-
gered, we additionally apply HOI denoising process before fixing
the hand pose.

Results. Fig. 7 shows the statistical results of the average score
over all participants for the penetration and stability metrics. The
results indicate that for the penetration metric, our GSHOI Denoiser
achieves an average score with a mean of 1.06 and a standard devi-
ation of 0.51, while MANUS achieves a higher penetration average
score with a mean of 4.47 and a standard deviation of 0.52. We ap-
ply the p-value and Cohen’s d to estimate the average score differ-
ences. The p-value < 0.001 indicates a significant de-penetration
effect of our method, and the Cohen’s d = 5.6 > 0.8, indicating
a huge effect size. For the instability metric, our method achieves
an average score with a mean of 1.73 and a standard deviation of
0.70. The p-value < 0.001 and Cohen’s d = 2.7 > 0.8 indicate
that our method achieves a more stable grasp pose than MANUS
significantly. We infer the reason for our method’s superior perfor-
mance on the two metrics as follows. The tracking hand skeleton
joints from the Leap Motion controller are very noisy. Regressing
driven poses from the tracking data in real time further introduces
additional noise, which makes it difficult for users to control the
hand to fit on the object surface precisely via mid-air poses with-
out any haptic feedback of physical contact. Our GSHOI Denoiser
effectively denoises the HOI, producing plausible grasp poses. In
contrast, MANUS does not consider any denoising strategy, usu-
ally leading to less satisfactory user experiences. After complet-
ing the questionnaire, we interviewed users regarding the physical
plausibility of the renderings. Three users reported that when using

MANUS, the hand-tracking noise prevented precise pose control,
resulting in grasps lacking physical plausibility. When using the
GSHOI Denoiser, they only needed to pose their hands roughly near
the object, and the denoised grasp poses look physically plausible.

5 CONCLUSION

In this paper, we have introduced the Gaussian Hand-Object In-
teraction Denoiser, the first Gaussian splatting-based hand-object
interaction denoising method, which effectively denoises the in-
put twisted and penetrated hand poses to produce photorealistic
results. We first propose the novel joint-to-Gaussian surface rep-
resentation, which accurately models the spatial relationships be-
tween hand skeleton joints and object Gaussians while emphasizing
hand-object penetrations and generalizing well to new hand poses
and objects. We then propose a geometry-aware de-penetration al-
gorithm that eliminates penetrations by detecting intersections be-
tween skeleton bones and object Gaussians and reposing any pen-
etrated fingers onto the estimated underlying surface of the object.
Compared to the state-of-the-art method, GeneOH+MANUS, our
method not only effectively reduces penetration but also produces
more realistic rendering quality. User study results show that our
method can improve the user’s subjective experience significantly.
Despite our method’s effectiveness, it also involves limitations.
First, the finger lengths of the pretrained hand Gaussians differ from
those of the user’s physical hand. Directly driving the hand Gaus-
sians using pose angles tracked from the user leads to joint mis-
alignments, especially at the fingertips. As future work, we plan
to fine-tune the finger length of the hand Gaussians to better fit
each user’s hand, enabling more accurate pose-driven animation.
Second, reconstructing hand and object Gaussians presently relies
on dense-view image data with high-quality camera annotations
and background segmentations. In future work, we aim to achieve
hand-object reconstructions from single-view or sparse-view im-
ages by leveraging image-generation models. Third, though our
method supports real-time HOI rendering, the diffusion and de-
penetration processes take about 10 seconds in total. Applications
using our method could initially render the noisy HOI input and in-
crementally update the rendering as long as the GSHOI Denoiser
completes one iteration and produces an intermediate result. We
suggest two directions for future speed improvement. 1) Replace
the diffusion model with more efficient generative models [9, 3] ca-
pable of producing results in a single forward pass. 2) Substitute the
iterative de-penetration with a closed-form solution: given the hand
Gaussians with known shape, first derive the target joint positions
so that each finger precisely contacts the object surface, and then
recover the corresponding bone rotations via inverse kinematics.
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