
SGSG: Stroke-Guided Scene Graph Generation
Qixiang Ma , Runze Fan , Lizhi Zhao , Jian Wu , Sio-Kei Im , and Lili Wang

Homogeneous
Prompting
Relation
Enhancement
Ambiguous
Annotation

Stroke Guidance Types

First-Person View Third-Person View

SGFN

GT

SG Results

wrong object prediction
correct object prediction

wrong predicate prediction
correct predicate prediction

point cloud patches color

inner predicate

Scene Graph Legend Ours

Ours
w/o strokes

Coarse Point Cloud
in Edge Device

Fig. 1: SGSG in action: In the XR first-person view, using controllers, the user can inspect the scene graph (nodes and edges) and
point clouds anchored in physical space, and draw strokes to refine semantic predictions. Updated semantics are shown in green, while
correctly inferred inner predicates “same part” (SP) are shown in yellow. The third-person view demonstrates three stroke guidance
types: binding nodes, modifying edges, and hinting nodes. Based on coarse point cloud patch inputs, SGSG unifies fragmented
object semantics, corrects ambiguities, and improves predicate prediction. User guidance generalizes beyond annotated regions,
addressing similar errors (e.g., misclassified “sofa”).

Abstract—3D scene graph generation is essential for spatial computing in Extended Reality (XR), providing structured semantics for
task planning and intelligent perception. However, unlike instance-segmentation-driven setups, generating semantic scene graphs still
suffer from limited accuracy due to coarse and noisy point cloud data typically acquired in practice, and from the lack of interactive
strategies to incorporate users’ spatialized and intuitive guidance. We identify three key challenges: designing controllable interaction
forms, involving guidance in inference, and generalizing from local corrections. To address these, we propose SGSG, a Stroke-Guided
Scene Graph generation method that enables users to interactively refine 3D semantic relationships and improve predictions in
real time. We propose three types of strokes and a lightweight SGstrokes dataset tailored for this modality. Our model integrates
stroke guidance representation and injection for spatio-temporal feature learning and reasoning correction, along with intervention
losses that combine consistency-repulsive and geometry-sensitive constraints to enhance accuracy and generalization. Experiments
and the user study show that SGSG outperforms state-of-the-art methods 3DSSG and SGFN in overall accuracy and precision,
surpasses JointSSG in predicate-level metrics, and reduces task load across all control conditions, establishing SGSG as a new
benchmark for interactive 3D scene graph generation and semantic understanding in XR. Implementation resources are available at:
https://github.com/Sycamore-Ma/SGSG-runtime.

Index Terms—Extended Reality, Scene Graph Generation, Spatial Computing, User Interaction.

1 INTRODUCTION

Semantic scene graphs play a vital role in spatial computing and task
planning within Extended Reality (XR) environments. By structurally
representing the semantics of objects and their relationships, they
support diverse applications such as embodied intelligence [20, 37],
virtual-physical interaction [24, 33], and scene-based content gener-
ation [12, 44]. With advances in physical scene acquisition and pro-
cessing, research has shifted from 2D to 3D scene graph generation
to enable deeper semantic reasoning in real-world environments. This
series of studies bridge computer graphics and vision, contributing sig-

• Qixiang Ma, Runze Fan, Lizhi Zhao, Jian Wu, and Lili Wang are with the
State Key Laboratory of Virtual Reality Technology and Systems, School of
Computer Science and Engineering, Beihang University, Beijing, China,
100191. E-mail: {sycamore_ma,by2106131,lizhizhao,lanayawj,
wanglily}@buaa.edu.cn.

• Sio-Kei Im is with Faculty of Applied Sciences, Macao Polytechnic
University, Macao SAR, China, 999078. E-mail: marcusim@mpu.edu.mo

• B Lili Wang is the corresponding author.

nificantly to high-level scene understanding. Most methods use point
cloud encoders and message-passing backbones, typically requiring
high-quality instance-segmented point clouds as input.

Due to sensing and resolution limitations of edge devices in prac-
tical scenarios, the acquired point clouds are often coarse, noisy, or
incomplete. These deficiencies hinder the reliability and accuracy of
scene graph generation, as the encoder is sensitive to object shape
and neighborhood message-passing struggles with ambiguous, discon-
nected, or fragmented points that lack relational consistency. Some
methods attempt to compensate by incorporating external knowledge or
multimodal signals, but such priors are tailored to instance-segmented
inputs or lack interactive strategies for refining predictions on degraded
geometry. In contrast, XR naturally supports intuitive spatial interac-
tion, enabling users to refine scene graph generation through direct,
structured in-scene feedback with minimal cognitive overhead, and to
express subjective or non-verbal semantics aligned with the 3D context.
To incorporate high-level user guidance, three challenges remain: (1)
designing controllable guidance that effectively influences prediction,
(2) injecting it smoothly into inference without disrupting learning
dynamics, and (3) generalizing local corrections to produce holistic
improvements across the scene graph.

In this paper, we propose SGSG, an interactive Stroke-Guided Scene
Graph generation approach addressing the above challenges. We design

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0004-0424-0308
https://orcid.org/0000-0002-4694-7086
https://orcid.org/0000-0001-9475-6682
https://orcid.org/0000-0002-3863-8814
https://orcid.org/0000-0002-5599-4300
https://orcid.org/0000-0003-1105-8542
https://github.com/Sycamore-Ma/SGSG-runtime
{sycamore_ma, by2106131, lizhizhao, lanayawj, wanglily}@buaa.edu.cn
{sycamore_ma, by2106131, lizhizhao, lanayawj, wanglily}@buaa.edu.cn
marcusim@mpu.edu.mo

an interaction paradigm with three distinct types of stroke guidance
and a lightweight algorithm to generate the SGstrokes dataset, where
each input is controllable and spatially grounded. Our model incorpo-
rates a guidance representation component to capture spatio-temporal
intent and a guidance injection network to integrate user feedback into
reasoning without disrupting inference. Alongside core loss terms,
we introduce an intervention loss combining consistency-repulsive
and geometry-sensitive constraints. In comparative experiments with
state-of-the-art (SOTA) methods, SGSG outperforms 3DSSG [35] and
SGFN [39] in overall accuracy and precision, including a 14.3% im-
provement in relationship tuple accuracy, and surpasses the multimodal
method JointSSG [38] in predicate-level metrics. The user study shows
that SGSG reduces task load as well as post-correction error. As shown
in Fig. 1, it enables users to adjust object and predicate semantics via
strokes at both local and global levels during spatial navigation over
coarse-segmented point clouds. The immersive semantic scene graph
can serve as augmented contextual information, supporting future XR
applications such as intent-driven interaction and embodied intelligence.
Our main contributions are summarized as follows:

• We propose an interactive 3D scene graph generation pipeline and
construct a SGstrokes dataset.

• We propose a novel representation for stroke guidance combining
temporal and geometric features.

• We propose a guidance injection network to improve semantic
prediction via both local and global correction.

• We design a set of intervention loss functions integrating
consistency-repulsive and geometric constraints.

2 RELATED WORK

We review prior work on semantic scene graphs, covering foundational
generation methods, prediction with structural cues, and applications
in spatial computing.

2.1 Semantic Scene Graph Generation
Semantic scene graph generation, also known as scene graph prediction,
aims to extract structured representations of objects and their relation-
ships from visual scenes [2]. Significant progress has been made in 2D
settings, focusing on network architecture optimization [26], external
knowledge integration [47], and incorporating spatio-temporal features
from video sequences [6]. With the availability of 3D datasets such as
ScanNet [7] and 3RScan [34], scene graph generation has expanded
beyond 2D. 3RScan provides structurally detailed instance and rela-
tionship annotations, establishing a benchmark for 3D scene graph
generation tasks. Early work by Armeni et al. [1] proposed a hierar-
chical semantic scene representation, followed by the representative
3DSSG (also known as SGPN) [35], which combined PointNet [16]
and graph neural networks (GNNs) [42] for joint learning of object and
relationship features. Later improvements introduced cross-attention
mechanisms between nodes and edges [45], and enhanced contextual
relation sampling [27]. Koch et al. [22] adapted autoencoder-based
scene reconstruction for scene graph generation, enhancing structural
regression. However, these 3D methods rely on instance-level inputs
and overlook external guidance, limiting their robustness on coarse-
segmented or noisy point clouds, as seen in our target scenarios.

2.2 Scene Graph Prediction with Structural Cues
Beyond foundational scene graph generation, recent approaches incor-
porate higher-level structural cues, such as linguistic or multi-modal
signals, to enhance robustness and semantic richness. Language em-
bedding methods [36], such as CLIP [32], have inspired the use of
vision-language models in scene graph prediction. These models in-
troduce structural cues via meta-word embeddings [46], improving
latent space interpretability, and language model tuning [21], which fur-
ther enhances semantic accuracy. Meanwhile, multi-modal alignment
and model distillation unify semantic representations across language,
image, and 3D inputs into shared spaces [40], enabling more gener-
alizable scene understanding. The recent method fuse pre-segmented

image features [15], relational text queries [25], and 3D geometry for
open-vocabulary scene graph prediction [23], expanding semantic label
diversity. However, these methods still rely on instance-level point
clouds inputs, limiting applicability in scenarios without reliable seg-
mentation. To address this, some works explore scene graph prediction
from coarse geometric segmentation. SGFN [39] handles non-instance
inputs by inferring same-part semantics from over-segmented points
patches reasoning using feature fusion. JointSSG [38] extends this
by aggregating image features with 2D structural cues from video
keyframes. Still, current methods lack an intuitive 3D interaction mech-
anism for actively guiding prediction and improving accuracy, which is
the gap our approach aims to fill.

2.3 Scene Graph for Spatial Computing
Spatial computing has evolved alongside XR [5] technologies and is
now closely linked to immersive human-computer interaction [30].
Recent research identifies its two key components: spatial content
perception or awareness [8,9,14], and scene-level semantic understand-
ing [11, 31], which support various intelligent applications, including
context-aware interaction [43, 49] and haptic intent modeling [28, 48].
Semantic scene graphs bridge perception and reasoning by providing
structured spatial representations. The work [41] explores scene under-
standing and editing, treating scene graph generation as a byproduct.
By capturing contextual layouts, scene graphs have been applied to
virtual–physical scenario alignment [10, 29], autonomous driving [3],
task planning [20], generative scene design [13], and 3D-aware seg-
mentation [18]. These applications demonstrate the potential of scene
graphs in advancing embodied intelligence through spatial computing.

3 METHOD

Our SGSG aims to produce a refined 3D scene graph by interactively
incorporating user corrections through XR stroke guidance. The overall
SGSG pipeline is illustrated in Fig. 2. In the first step, we represent the
temporal-spatial guidance features based on the input strokes (Sec. 3.2).
In the second step, we introduce a guidance injection network to align
and integrate these guidance features into the semantic prediction,
thereby correcting it both locally and globally (Sec. 3.3). In the third
step, we adapt a GNN-based inference backbone [39] to combine
traditional 3D scene features with our guidance features and produce
the final semantic prediction. Throughout these three steps, we employ
a set of losses, including an intervention loss, to train the entire model
(Sec. 3.4).

3.1 Main Methodology
We formulate the problem using the following function:

{t̂, ŷ} = F(S,P). (1)

Here, the input to our pipeline consists of a stroke sequence S =
{Sk}N−1

k=0 , representing N user strokes that interactively guide the
generation process, and a scene point cloud P. The model F outputs
t̂, the predicted interaction types for each stroke (e.g., binding nodes,
modifying edges, or hinting nodes), and structured labels ŷ representing
refined scene semantics, including object identities and their predicates
(e.g., “table – standing on – ground”). Following the three steps of our
pipeline, we briefly describe the input-output flow of each component
and their functionalities:

• Guidance Representation: It learns guidance representations
from user strokes, capturing both temporal intent and geomet-
ric spatial contexts. Given an input stroke Sk, it predicts the
guidance type t̂k and generates learned stroke guidance features
z
(t̂k)
k , which encode the temporal meaning and spatial informa-

tion necessary for refining the scene graph. (Blue background in
Fig. 2)

• Guidance Injection: It receives the stroke guidance features
z
(t̂k)
k and the predicted guidance type t̂k as inputs. Then it pro-

cesses these to generate aligned features f (t̂k), which are then

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

Homogeneous
Prompting

Relation
Enhancement

Ambiguous
Annotation

LSTM

�im

Attention
Pooling

⋮

Temporal
Features

Geometric
Encoding

Guidance
Type Vector

�

Sample

L

Stroke Guidance Types
Stroke Classification

LossMask Pading

Task-specific Head
 Binding Nodes Modifying Edges Hinting Nodes

Type 1
proj head

Type 2
proj head

L

Feature Spaces
Alignment Loss

�(�)

Auto
decoder

文, あ
Ground Truth Label

L
Auto

encoder

[logits]

Hint
Loss

Rough
Segmentation

Encoder

Features
Blending

Similarity
Matching

⋮

[logits]

[logits]

[logits]

⋮

Nodes & Edges
Loss

st
an

di
ng

on

table

same
partchair chair

floor
standing

on

none

Message
Passing

Consistency-Repulsive
Geometry

conditions

�ex
Spatial

Attributes

�(�) �(�)

Aligned
Features �(�) �(�) �(�)

Intervention
Loss

L

�

�� / ��, �� �� / � �,� �� / � �,� �� / � �,�

Decoder

M
LP

�hint

�

�(�) �ℎ���

Guidance
FeaturesInput 1: Interactive Strokes

Input 2: Coarse Point Cloud Output: Scene Graph

Type 0
proj head

G
uidance

Injection
G

uidance
Representation

Sem
antic

Inference

hint point cloud

�hint

Fig. 2: Pipeline of our SGSG method. In this interactive model, the top two rows process user strokes to identify guidance types and generate
guidance information. The Guidance Representation component (blue background) samples the strokes into S, extracts their guidance features
[zim, zex], and predicts the intended guidance type t̂. The Guidance Injection network (cyan background) uses a multi-head task specification
structure to project these features into an aligned guidance space, which also encodes ambiguous hints (e.g., the green z̃hint). The resulting f is
matched by similarity and injected into the Inference backbone (bottom row, gray background) to produce the refined x̃.

injected into the backbone by mapping them to the corresponding
semantic intermediate features xi or x⟨u,v⟩. Mixed updates are
applied to these to produce x̃, refining target features both locally
and globally, and influencing the structure of the scene graph.
(Cyan background in Fig. 2)

• Semantic Inference: It encodes the coarse point clouds input Pi

to produce node representations [39] xi. For predicates between
point clouds patches Pu and Pv , edge features x⟨u,v⟩ are com-
puted. After being refined through Guidance Injection to x̃, they
are then passed through GNN, producing updated node features
x′
i and edge features x′

⟨u,v⟩. The decoder generates objects and
predicates semantic logits ŷ, which are used to predict node and
edge labels respectively for the scene graph. (Gray background
in Fig. 2)

3.2 Stroke Guidance Representation
3.2.1 Stroke Definition
As different forms of interactive intention, we define three types of
strokes to address specific prediction errors:

• Homogeneous Prompting (Type 0): Binding nodes. Brush-
ing over large objects combines multiple semantic parts into a
single entity, preventing them from being mistakenly interpreted
as different separate semantics objects.

• Relation Enhancement (Type 1): Modifying edges. Linking
two parts in the scene and correcting or enhancing the edges of
the scene graph improves the accuracy of predicate predictions.

• Ambiguous Annotation (Type 2): Hinting nodes. Circling
mismatched or unrecognized objects, such as small ones or those
merging with the background, optimizes the precision and com-
pleteness of the scene graph.

These three stroke types are the result of an author-informed heuristic
design, with exploratory validation conducted through a small set of
collected real user strokes. Preliminary study showed meaningful clus-
tering results, supporting the feasibility of the proposed pattern. See
supplementary material for details. An input stroke, captured in the

3D scene via XR controllers, is first sampled at a certain frequency
to produce an ordered sequence Sk = (s0, s1, . . . , sn−1), where each
point si ∈ R3. The sequence is then processed through two encod-
ing pathways: implicit and explicit, deriving latent feature zim and
explicit feature zex. These features capture the user’s interactive in-
tent incorporating spatial context and facilitate subsequent targeted
corrections.

3.2.2 Implicit Temporal Feature Representation

The stroke sequence S is fed into an LSTM network to encode temporal
dependencies. For each point si, it generates a hidden state hi ∈
Rh, forming the hidden states sequence H = (h0,h1, . . . ,hn−1)
with the initial state h0 = 0. The LSTM processes the sequence as:
{hi, ωi} = LSTM(si−1,hi−1, ωi−1), where 1 ≤ i ≤ n − 1, and
ωi is the cell state with ω0 = 0. To highlight key temporal patterns,
an attention mechanism is applied to the hidden states. We obtain
an intermediate attention representation U ∈ Rn×a by applying a
linear transformation and a non-linear activation to the hidden states:
U = tanh(HWatt + batt), where Watt ∈ Rh×a and batt are
learnable parameters. The latent feature zim is then computed as:

zim = softmax(Uwctx)
⊤H, (2)

with context vector wctx ∈ Ra×1. This implicit feature captures
temporal dynamics meaning such as trend, timing, points of interest,
and key segments, providing permutation-variant interactive guidance.

3.2.3 Explicit Spatial Feature Representation

This captures the geometric and structural attributes of the stroke S. It
consists of point count n, cumulative distance d =

∑n−1
i=1 ∥si − si−1∥,

average curvature κ =
∑n−2

i=1

2 sin(θ⟨−−−−→si−1si,
−−−−→sisi+1⟩)

(n−2)·∥si+1−si−1∥
, voxel volume ν,

centroid c, start point s0, end point sn−1, and cumulative cross product
vector v =

∑n−2
i=1

−−−→si−1si ×−−−→sisi+1. These attributes are concatenated
to form the spatial feature descriptor:

zex = [n, d, κ, ν, c, s0, sn−1,v]. (3)

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

This representation of spatial feature zex enables the network to more
efficiently understand high-dimensional semantic guidance and intent
from human inputs. Specifically, n and d together indicate stroke length
and drawing speed, aiding in clustering long type 0 strokes. The κ sep-
arates straight and curved strokes, which is useful for identifying linear
type 1 strokes as well as regions with high geometric variation. The ν,
reflecting the voxel occupancy ratio, mitigates feature contamination
from repetitive overpainting. The c, s0, and sn−1 help infer spatial in-
tent, such as the target area (type 0, 2) or connection endpoints (type 1).
The v facilitates clustering of looped type 2 strokes with strong normal
components and implicitly encodes the geometric surface orientation
of the corresponding scene region.

3.2.4 Stroke Classification
This component enables our model to infer stroke guidance types
based on the user’s interaction intent. The combined feature vector
z = [zim, zex] is used as input for stroke classification, applied as:

t̂ = argmax(softmax(gt(z))) (4)

where gt(·) is an MLP, and t̂ ∈ t̂ represents the predicted interaction
type of stroke S, taking values in {0, 1, 2} to satisfy task-specific
correction requirements as in stroke definition. The zex improves the
distinction of interaction types, for example, ν ensures that users can
consistently select or revisit the same area within a stroke without
misinterpreting the interaction type. The output Z = (zk)

N−1
k=0 and t̂

are then passed to the next guidance injection network.

3.3 Guidance Injection Network
We propose a network that modifies the features of objects and pred-
icates based on the specified predicted interaction types t̂. Once ex-
tracted, the stroke features are first projected and aligned with the
backbone’s geometric space, and then blended into the inference back-
bone through strong or weak guidance injection mechanisms to refine
scene graph generation locally or globally.

3.3.1 Strokes Guidance Feature Alignment
We align each user stroke guidance feature z ∈ Z from the stroke
feature space Rdimz to the backbone’s geometric space Rdimf , prepar-
ing for subsequent point-wise or global modifications and facilitating
joint training. We design a task-specific projection head to adaptively
transform features by pi or Pi based on the task t:

f (t) = δ0 · p0(z) + δ1 · p1(z) + δ2 · P2(z,Phint), (5)

where Dirac function δi = δ(t−i) is 1 if t = i and 0 otherwise. Projec-
tor pi(·) is an MLP. Crucial for Type 2 interactions, the projector P2(·)
combines stroke features with spatial context hint features to jointly
compensate for the insufficient representations in the backbone infer-
ence: P2(z,Phint) = (1−γhint)·p2(z)+γhint ·fh.(Phint). Here, the
hint input Phint is the point cloud enclosed by the stroke, contributed
by those inside a sphere with the center of stroke and its fitted radius.
The function fh(·) = [fp(·), fdes(·)] is concatenated from the PointNet,
and the descriptor as in [39], and γhint is the weighting factor. Particu-
larly, we introduce an autoencoder afterward, where the resulting latent
feature is decoded to produce hint logits ŷhint = ϕhint(fh(Phint)).
This logits will be incorporated into the loss constraints discussed in
Sec. 3.4.

3.3.2 Strong Guidance Injection
The purpose of the strong guidance injection mechanism is to apply
local modifications to the node or edge middleware features of the
scene graph, directly adjusting the semantics of the objects or predi-
cates involved in stroke interactions. The modification method varies
depending on the specific stroke type:

• Type 0: If stroke Sk intersects the bounding box b(Pi) of a point
cloud patch Pi, the corresponding node feature xi is blended
with f

(0)
k to produce x̃i.

Fig. 3: Illustration of the SGstrokes dataset, showing stroke guidance
annotations for different objects and relationships in three example sce-
narios. The interactive guidance types 0, 1, and 2 of strokes are marked
in yellow , blue , and green , respectively.

• Type 1: The stroke Sk influences the edge feature x⟨u,v⟩ between
the patches nearest to the stroke’s endpoints. It is blended with
f
(1)
k to yield x̃⟨u,v⟩.

• Type 2: If the patch is within the region of stroke Sk, which is
a spherical area around the centroid c with radius r, the patch
feature xi is blended with f

(2)
k .

In all cases, the updated x̃ is computed by re-weighting the original
feature x with the aligned stroke feature fk: x̃ = x+α·fk

1+α
, where α is

the strong injection rate. The x̃ is then used for subsequent message
passing, thereby correcting the prediction error locally. For Type 1
strokes, additional node features of patches within each stroke end-
point’s control region are also updated, which will be discussed in
Sec. 3.4.

3.3.3 Weak Guidance Injection
Similar scene graph errors may recur in predictions of the same type.
Weak guidance injection aims to correct these errors in a batch using
fewer interactions than the number of errors. Since features have been
well aligned in prior projection steps, objects or predicates with similar
semantics or error patterns can be adjusted jointly. Taking the example
of modifying multiple errors through a single Sk, we first compute the
mask Mk to include middleware features of the scene graph that are
similar to the stroke guidance intent:

Mk = {(x, ρx) | ρx = cos(fk,x), ρx > τ}, (6)

where ρx is the cosine similarity between fk and each node or edge
feature x, and τ is the similarity threshold. All features in Mk are
re-weighted by fk: x̃ = x+β ρx fk

1+β ρx
, ∀x ∈ Mk, where β is the weak

injection rate. This can gently assign single stroke corrections across
globally similar or semantically related parts of the scene graph.

3.4 Training Setup
Our training process used the 3RScan dataset [34] and our constructed
SGstrokes dataset (Fig. 3). The training objective is to improve feature
alignment, enhance inference quality, and address reasoning limitations
on coarse point cloud patches and their relations. This is achieved
using core and intervention losses, with the total loss defined as Ltotal =
Lcore + λitvLitv.

3.4.1 SGstrokes Dataset
Our SGstrokes dataset augments 3D scenes with stroke-based guidance
and annotations for objects and predicates, which contains 291k guid-
ing strokes across three interaction types, paired with 1335 scanned
scenes based on 3RScan [34]. Each stroke Ssg is represented by
(S, t, o, l, n, d), denoting stroke points, type, guided counter-object
(or edge) index, desired label, number of sampled points, and stroke tra-
jectory length. The dataset was generated using geometric algorithms
tailored to each type, simulating realistic user interactions. As shown
in Algorithm 1, noise augmentation aligns the dataset more intuitively
with human interaction patterns, improving guidance for 3D scene
graph generation tasks. The noise model used here is formulated based
on a coarse fit to preliminary user data described in Sec. 3.2.1. Further
details are provided in the supplementary material.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Stroke Generation Algorithm
Require: Stroke Type t, Counter-Object(s) Bounding Box b
Ensure: Generated Stroke Points S
1: Initialize S = {}, and compute center c from b

2: if t = 0 and max(bx, by, bz) > 0.2 then
3: Compute volume← bx · by · bz
4: num_points← clip

(
30 + 40 · volume−0.008

36−0.008 , 30, 70
)

5: for i = 1 to num_points do
6: Generate random point Si inside c± 0.4b

7: S.append(Si + ∆Si), noise ∆Si ∼ U(−0.1b, 0.1b)
8: else if t = 1 then
9: Select start, end ∼ U(cst,ed ± 0.5bst,ed)

10: Compute length← ∥end− start∥
11: num_points← clip

(
10 + 20 · length−0.1

2.5−0.1 , 10, 30
)

12: for i = 1 to num_points do
13: Interpolate Si ← start+ i · end−start

(num_points−1)

14: S.append(Si + ∆Si), noise ∆Si ∼ U(−0.05, 0.05)
15: else if t = 2 and max(bx, by, bz) < 1.5 then
16: Find major axes a1, a2 from b

17: Compute radius r1 ← ba1/2, r2 ← ba2/2

18: Compute perimeter ← π · (r1 + r2)

19: num_points← clip
(
20 + 30 · perimeter−0.2π

3.0π−0.2π , 20, 50
)

20: for θ from 0 to 2π with step 2π
num_points do

21: Compute Slocal ← r1 cos(θ)a1 + r2 sin(θ)a2

22: Apply augmented noise ∆Si ∼ N(0, 0.025)

23: S.append(Si ← c+ Slocal + ∆Si)
return S

3.4.2 Core Losses

Core losses Lcore ensure classification accuracy and feature alignment
consistency, defined as Lcore = Lclass + λalignLalign.

Classification Constraints Represented as Lclass, it minimizes
discrepancies between process or result predictions and ground truth
semantic labels by: Lclass = Lstroke + Lhint + Lnode + Ledge. Here,
Lstroke = CE(t̂, t) and Lhint = CE(ŷhint,yhint) are cross-entropy losses
CE(·) for stroke guidance type classification and autoencoder hint
prediction (Sec. 3.3) in the Type 2 projection head. Ground truth labels
t and yhint come from the SGstrokes dataset. Lnode and Ledge use focal
loss [39] to address class imbalance in the final semantic predictions.

Alignment Constraints Represented as Lalign, it ensures consis-
tency between projected stroke features f and corresponding backbone
features x, allowing projectors to better transform features from stroke
guidance to geometric space:

Lalign =
1

2n

∑n−1

k=0

[
MSE(f

(0)
i ,xk) + MSE(f

(2)
i ,xk)

]
+

1

m

∑m−1

⟨u,v⟩=0
MSE(f

(1)
j ,x⟨u,v⟩); i = ψ(k), j = ⟨ψ(u), ψ(v)⟩,

(7)

where n and m denote the node and edge counts of the scene graph,
and ψ(·) maps point cloud patch node indices to object instance IDs.
The ⟨·, ·⟩ uses a prime hash function.

3.4.3 Intervention Losses

Intervention losses Litv use additional information from stroke guidance
and geometric priors to jointly address common prediction errors and
enhance model robustness and generalization, defined as Litv = Lcon +
Lrep + λgeoLgeo.

Consistency Constraints Represented as Lcon, it ensures consis-
tent semantic predictions within patches groups influenced by the same
specific stroke:

• Type 0: Patches traversed by the same Type 0 stroke form
group G0 and should have consistent semantic labels. Addition-
ally, the connecting edges between them should follow the seman-
tic label “same part (sp)”.

(a) Point cloud distribution. (b) Distribution density by edge length.

Fig. 4: (a) Distribution of point cloud patches around edge endpoints,
motivating the design of guidance intervention fitting; (b) Distribution of
point-to-endpoint distances under different edge lengths (step size 0.2m).
These distributions are approximately modeled by a gamma function
(a = 2.0, scale 0.125) used in training.

• Type 1: Patches near the endpoints of a Type 1 stroke form
groups G1u and G1v , with patches within each group having con-
sistent labels. The fitting details for the endpoint neighborhoods
are shown in Fig. 4.

Based on the above, the consistency loss is formulated as:

Lcon = CG0

 ∑
i,j∈G0

MSE(ŷi, ŷj) +
∑

u,v∈G0

CE(ŷ⟨u,v⟩, sp)


+

∑
G∈{G1u,G1v}

CG
∑

i,j∈G
Φ(ϕi, ϕj)MSE(ŷi, ŷj), (8)

where CG = 2
|G|(|G|−1)

and the probability harmonization function

is Φ(ϕi, ϕj) =
2ϕiϕj

ϕi+ϕj
, with ϕi = ϕ(∥ci − pe∥) representing gamma

probabilities based on the distance from patch centers ci to endpoints
pe as fitted in Fig. 4.

Repulsive Constraints Represented as Lrep, it leverages addi-
tional information from stroke guidance and applies contrastive learn-
ing to push predictions away from clearly incorrect labels, repulsing
irrelevant semantic features:

• Type 1: Edges predictions with Type 1 stroke should be
repulsed from “sp” to reduce false positives. These are edges
between patches groups G1u, G1v in the stroke endpoints’ neigh-
borhood, with probability harmonization.

• Type 2: Foreground patch group G2f semantics in the Type 2
stroke disambiguation hint region should be repulsed from

background group G2b, and their predicates distanced from sp,
enforcing exclusive classification.

Based on the above, the repulsive loss is formulated as:

Lrep =−
1

|G1u||G1v|
∑

u∈G1u

∑
v∈G1v

Φ(ϕu, ϕv)FPsp(ŷ⟨u,v⟩)

+
1

|G2f ||G2b|
∑

i∈G2f

∑
j∈G2b

Nj

[
MSE(xi,xj)− FPsp(ŷ⟨i,j⟩)

]
, (9)

where FPsp(ŷ) = log
(
1− ŷ · 1{sp} + ϵ

)
, with the label sp one-

hot encoded as 1{sp}, and a small constant ϵ. Nj = N (∥cj −
pc∥;µ(r), σ(r)) is a normal distribution based on the distance from
background patch cj to the hint region center pc, where µ(r) = 2r,
σ(r) are the mean and standard deviation, with the 2-sigma rule keeping
the background distribution within range [r, 3r]. r is the hint region’s
radius.

Geometric-Sensitive Constraints Represented as Lgeo, it lever-
ages geometric priors to enhance classification:

• Large Flat Objects: Distinguish objects such as “curtain” or
“table” by their principal normal vectors. Inspired by [29], we
categorize them vertically or horizontally into groups V and H ,
penalizing mismatched orientations.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

bathtub
bed

bookshelf
cabinet

chair
counter
curtain

desk
door
floor

otherfurniture
picture

refridgerator
shower curtain

sink
sofa

table
toilet
wall

window

ba
th

tu
b

be
d

bo
ok

sh
.

ca
bi

ne
t

ch
ai

r
co

un
te

r
cu

rt
ai

n
de

sk
do

or
flo

or
ot

h.
pi

ct
ur

e
re

fr
i.

sh
. c

.
sin

k
so

fa
ta

bl
e

to
ile

t
w

al
l

w
in

do
w

ba
th

tu
b

be
d

bo
ok

sh
.

ca
bi

ne
t

ch
ai

r
co

un
te

r
cu

rt
ai

n
de

sk
do

or
flo

or
ot

h.
pi

ct
ur

e
re

fr
i.

sh
. c

.
sin

k
so

fa
ta

bl
e

to
ile

t
w

al
l

w
in

do
w

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

attached to

build in

connected to

hanging on

none

part of

same part

standing on

supported by

at
ta

ch
. t

o

bu
ild

 in

co
n.

 to

ha
ng

. o
n

no
ne

pa
rt

 o
f

sa
m

e
pa

rt

st
an

d.
 o

n

su
pp

. b
y

at
ta

ch
. t

o

bu
ild

 in

co
n.

 to

ha
ng

. o
n

no
ne

pa
rt

 o
f

sa
m

e
pa

rt

st
an

d.
 o

n

su
pp

. b
y

(a) Before intervention. (b) After intervention.

O
bj

ec
ts

 P
re

di
ct

io
n

Pr
ed

ic
at

es
 P

re
di

ct
io

n

Fig. 5: Comparison of confusion matrices (a) before and (b) after inter-
vention. As shown in the top row matrices, nodes prediction becomes
more concentrated along the diagonal, especially for planar objects such
as “bed”, “chair ”, “curtain”, “desk ”, “refrigerator ”, “table”, or “walls”. The
bottom row matrices show improved edges prediction related to spatial
hierarchy, including categories like “built in” or “part of ”.

• Hierarchical Relationships: Overlap in the z-projection boxes
indicates predicates like “built in” or “standing on”. An IoU-
based loss refines these hierarchical predictions.

Based on the above, the geometric loss is formulated as:

Lgeo =
∑
i∈V

(ni · k)2 +
∑
i∈H

(1− (ni · k))2

+
∑m−1

⟨u,v⟩=0
ŷ⟨u,v⟩ 1{hier} [1− IoUxy(b(Pu), b(Pv))] , (10)

where k is the upward unit vector, and IoUxy denotes the intersection
over union in the vertical projection, with the denominator set to the
smaller bounding box area to increase sensitivity for small objects in
hierarchical structures. The improvements introduced by Litv are shown
in Fig. 5.

4 EXPERIMENTS

4.1 Implementation Details
The models used in our experiments were trained and evaluated on a
device with an i7-10700KF CPU, 32 GB RAM, and an RTX 3080Ti
GPU. The user host used a PICO 4 XR device for spatial navigation and
stroke input, communicating with the model server via a Flask-based
protocol [17]. The average runtime latency of ours for scene graph
feedback after each interaction was 261.5 ms, including 55.7 ms for
communication, 18.7 ms for inference, 179.1 ms for 3D graph cali-
bration, and 7.9 ms for rendering. A detailed analysis of the system
implementation performance is provided in the supplementary material.
During training, the batch size was 1, with a maximum of 300 epochs,
early stopping patience set to 30, and an initial learning rate of 1×10−4.
We randomly sampled k ∈ [0, 10] strokes per scene. When k → 0,
the inference process reduces relying on stroke guidance to prevent
joint learning degradation. The similarity threshold was set to τ = 0.7.
Loss weights were λitv = 0.1, λalign = 1.0, and λgeo = 2.0. Stroke
sampling frequency was 100 Hz, voxel density 0.1m3, and input stroke
size padded to 100 points (h = 16, a = 16). The type classifier gt(·)
has two layers (32 and 16 units), projecting to size 4. Projectors pi(·)
have two layers (32 and 64 units), taking and yielding features with

dimz = 32 and dimf = 256. Backbone settings follow those in [39].
To explore the effect of injection rates, we set up two configurations:
Config. A with a strong injection rate α = 0.7 and weak injection
rate β = 0.3, and Config. B with α = 0.35 and β = 0.15. Ablation
studies for different settings or toggles are presented in Sec. 4.3.

4.2 Results and Analysis
We compared our SGSG method with several SOTA methods 3DSSG
[35], SGFN [39], and JointSSG [38], on the 3RScan dataset, which
features coarse-segmented geometry with 20 object and 9 predicate
classes label annotations (Segm-l20).

4.2.1 Qualitative Comparison
Fig. 6 presents a qualitative comparison between the non-guidance
SGFN method with coarse-segmented point cloud as input [39] and our
SGSG. As shown in four example scenes, SGSG, with few strokes in-
teraction, generates more accurate scene graphs compared to traditional
methods. In the hall scene, some object labels were mispredicted, and
the predicates to the ground were mismatched. After one and one
stroke guidance, the label “sofa” was corrected to “chair”, and several
other mispredicted predicates with same error pattern were corrected
to “standing on”. Similarly, in the study room, strokes refined
the armchair’s structure by preventing over-segmented patches of the
same object from being predicted as different semantic instances, and
preserving their internal relations. After that, the interaction success-
fully hinted at the “cabinet” from the “wall” background, correcting
the object label while also decoupling their “same part” association.
In the park scene, the “wall” of the hut was corrected with a stroke,
and “table” was identified using a , which also helped separate it
from distant objects previously grouped under the “same part” relation;

corrected the “standing on” predicate. In the bedroom, “bed” and
“cabinet” were corrected through and interactions; meanwhile,
certain relational structures and their associated objects, such as “wall -
attached to - floor”, were generalized and corrected by the combined
effect of multiple strokes. Fig. 7 shows the latent feature distributions
of node semantic labels for the SGFN baseline, as well as for SGSG be-
fore and after incorporating interaction guidance. Our method enhances
semantic embeddings and discrimination. It clearly distinguishes large
objects like “floor”, differentiates similar objects such as “window” and
“picture”, and closely clusters semantically similar items like “curtain”
and “shower curtain”. Although our encoder learns high-dimensional
features before stroke integration, adding stroke guidance further im-
proves precision. For instance, embedding distances between “sink”
and “toilet” in similar scenes become more distinct. Extended quali-
tative comparisons and temporal evolution visualizations, along with
corresponding analyses, are provided in the supplementary material.

4.2.2 Quantitative Comparison
We also conducted quantitative comparisons using the same benchmark
codebase and parameter settings, and reporting the best results from
three independent training runs. Tab. 1 presents the results on Segm-
l20, comparing our method with SOTA methods, all of which can be
adapted to take coarse-segmented point clouds as input. The three main
columns represent metrics for object label semantics, predicate label
semantics, and triplet relationship semantics, respectively. As shown,
SGSG without stroke interaction input (Ours w/o S) already slightly
outperforms the SGFN baseline, indicating that joint training with our
stroke representation and guidance injection network improves global
representation and inference. With an average of 10 random strokes
input from SGstrokes, our method surpasses SGFN across all accuracy
(Acc.) metrics, with improvements of 7.5% and 2.2% in object and
predicate accuracy respectively, and a 14.3% increase in relationship
tuple accuracy, reflecting an increase in correct label predictions. For
top-K recall (R@K), our method shows limited improvement at higher
K values but excels in top-1 prediction, indicating that our model is
more confident in the first prediction. Additionally, our method im-
proves macro-precision (Prec.), demonstrating better prediction not
only for major categories but also for those minor imbalanced classes
through guidance corrections, surpassing the baseline by 17.2% and

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

ha
ll

st
ud

y
ro

om
pa

rk
be

dr
oo

m
Coarse-segmented

point cloud
RGB point cloud vs
strokes guidanceSGFN result SGSG result

Fig. 6: Comparison of SGFN [39] and our SGSG on Segm-l20. The first column shows the input coarse-segmented point cloud, and the fourth
column adds the interactive strokes guidance for SGSG. The second and third columns display SGFN and SGSG results, with correctly predicted
nodes circled in and incorrectly predicted nodes framed in . Node background color corresponds to coarse-segmentation pseudocolor. For
predicates, correctly predicted edges are marked with , and “same part” edges are highlighted with . Incorrectly predicted edges are marked
with , and those falsely predicted as “none” are marked with . Generically predicted edges not annotated in the dataset are marked with .

Table 1: Quantitative performance comparison across methods and metrics.

Method Objects Predicates Relationships
R@1(Acc.)↑ R@3↑ R@5↑ R@10↑ Prec.↑ R@1(Acc.)↑ R@3↑ R@5↑ R@10↑ Prec.↑ R@1(Acc.)↑ R@3↑ R@5↑ R@10↑

Se
gm

-l2
0 3DSSG [35] 0.4674 0.7477 0.8663 0.9657 0.2823 0.8322 0.9839 0.9965 1.0 0.4736 0.2248 0.3332 0.4126 0.5187

SGFN [39] 0.6354 0.8489 0.9334 0.9858 0.4544 0.8351 0.9846 0.9969 1.0 0.4483 0.3988 0.4831 0.5856 0.6933
Ours (w/o S) 0.6617 0.8565 0.9325 0.9804 0.4964 0.8458 0.9809 0.9953 1.0 0.5054 0.4341 0.5399 0.6205 0.7254
Ours 0.6830 0.8633 0.9393 0.9843 0.5330 0.8538 0.9801 0.9951 1.0 0.5381 0.4561 0.5643 0.6446 0.7437
JointSSG [38] 0.6880 0.9041 0.9630 0.9931 0.5786 0.8454 0.9887 0.9970 1.0 0.5169 0.4601 0.5848 0.6733 0.7771

20.0% in object and predicate macro-precision, respectively. The row
below the rule lists the multimodal input method JointSSG, which
incorporates 2D serial visual information input; our method’s perfor-
mance is comparable to it. Notably, we surpass JointSSG in terms of
predicate results, with accuracy and precision improved by 1.0% and
4.1%, respectively. This likely benefits from our type 1 interaction, a
direct and simple geometric approach that explicitly establishes seman-
tic connections between objects, which is challenging to achieve by
relying solely on 2D images. We note that the average inference time
of JointSSG during implementation reaches 472.1ms, over 25 times
slower than that of ours, suggesting a trade-off between performance
and efficiency.

4.3 Ablation Studies

We performed ablation studies to assess the impact of various design
choices on our method. First, as shown in the first ablation column of
Tab. 2, we evaluate the effect of applying point cloud normalization
(nor.) before encoding. Although the baseline PointNet scales and
normalizes input clusters, normalization in our method, where specific
point cloud patches might be concatenated by strokes, could lose rela-

Table 2: Ablation of model configurations on performance metrics.

Method no
r.

sp
t.

itv
.

fit
. mRecall↑ Accuracy↑ Precision↑

obj. pred. obj. pred. obj. pred.
M0 0.4176 0.4431 0.5549 0.8138 0.3816 0.4275
M1 ✓ 0.4144 0.4208 0.5830 0.8347 0.5045 0.4553
M2 ✓ ✓ 0.4162 0.4185 0.5934 0.8299 0.4817 0.4547
M3 ✓ ✓ ✓ 0.4248 0.4127 0.6008 0.8303 0.4655 0.4269
M4 ✓ ✓ 0.4965 0.4679 0.6567 0.8495 0.5111 0.4930
M5 ✓ ✓ ✓ 0.5012 0.4639 0.6691 0.8517 0.4969 0.4745
M6 ✓ ✓ ✓ ✓ 0.4723 0.4888 0.6830 0.8538 0.5330 0.5381

tive size and positional information, potentially leading to mismatches
in large or relational objects. Surprisingly, comparisons between con-
figurations M1–M3 and M4–M6 reveal that normalization consistently
improves overall metrics instead. In M5, mRecall for objects and predi-
cates increased by 8.4% and 4.5% respectively when compared with
M2, suggesting that bypassing normalization forces the encoder to rely
on rigid size and position features, which harms performance on ob-
jects with diverse morphologies under the same label or on predicting
relationships across different scene scales. Next, in the second ablation
column of Tab. 2, we assess the inclusion of explicit spatial encoding

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

(a) Baseline method. (b) Ours w/o strokes. (c) Ours with strokes.
Cl

as
s

La
be

ls

ba
th

tu
b

be
d

bo
ok

sh
.

ca
bi

ne
t

ch
ai

r
co

un
te

r
cu

rt
ai

n
de

sk
do

or
flo

or
ot

h.
pi

ct
ur

e
re

fr
i.

sh
. c

.
sin

k
so

fa
ta

bl
e

to
ile

t
w

al
l

w
in

do
w

Fig. 7: The object latent feature distribution under t-SNE of the (a) SGFN
baseline method, (b) SGSG without strokes guidance injection, and (c)
SGSG with strokes.

(spa.) in the stroke representation. In our early implementation as M0,
we relied solely on temporal implicit encoding of stroke sequences,
which made it difficult for the model to capture basic stroke properties
such as curvature or endpoints, or align them with geometric space.
From M1 onward, adding an explicit spatial encoding segment zex
led to improvements in overall accuracy and precision. The third ab-
lation column of Tab. 2 examines the use of the Litv loss term (itv.),
while the fourth ablation column of Tab. 2 investigates the impact of
incorporating additional geometric probability harmonization fitting
(fit.) for contrastive learning instead of relying solely on ground truth
labels. Comparing M5 with M4, the inclusion of intervention improved
overall prediction accuracy especially for objects, although precision
slightly decreased. This degradation likely stems from the ground truth
lacking neighborhood context, causing the model to correct semantics
by intervention for large objects at the expense of low-frequency ones.
Adopting probability harmonization fitting, as in M6, further improved
predicate predictions and overall precision, likely due to better con-
sideration of contact objects and spatial context. Similar trends were
observed in the comparison between M2 and M3.

Table 3: Ablation on the impact of the solo interactive stroke type.

Type N Objects Predicates Relationships
Acc.↑ mRec.↑ Prec.↑ Acc.↑ mRec.↑ Prec.↑ Acc.↑

0∗ 0.6617 0.4566 0.4964 0.8458 0.4627 0.5054 0.4341

0 3 0.6704 0.4644 0.5040 0.8497 0.4793 0.5019 0.4403
5 0.6782 0.4709 0.5204 0.8532 0.4836 0.5055 0.4506

1 3 0.6649 0.4634 0.5069 0.8455 0.4764 0.5115 0.4367
5 0.6665 0.4613 0.4887 0.8474 0.4769 0.5253 0.4379

2 3 0.6717 0.4669 0.5065 0.8488 0.4709 0.5146 0.4410
5 0.6746 0.4848 0.5200 0.8491 0.4733 0.5060 0.4442

Additionally, to isolate the effects of our three stroke interaction
paradigms, we evaluated models with only N strokes from a single
interaction type. As shown in Tab. 3, we expected type 0 and type 2
interactions to optimize object predictions and type 1 to enhance predi-
cate predictions (corresponding cells highlighted in gray). The results
confirm our expectations. Notably, some strokes improved both their
target predictions and others. For instance, type 0 significantly boosted
relationship metrics by refining both object predictions and the internal
predicates of large object patches. Similarly, type 1 not only corrected
predicate edges but also enhanced the semantics of objects nearby
stroke endpoints, while type 2 considered both foreground and back-
ground, simultaneously extracting objects and refining related predicate
semantics. These improvements in correlation metrics may also stem
from message passing effects. In summary, all three types enhanced
overall performance.

In line with the discussion at the beginning of this section, we
conducted experiments for both Config. A and Config. B with N
strokes inputs from 0 to 20 to investigate the effects of injection rates
and the number of interactive strokes on model performance. Each
set of hyperparameters was run 10 times, with sample and rolling
averages of model accuracy and precision shown in Fig. 8. The model’s
performance improves rapidly at the beginning of stroke injection;

(Config. A) (Config. B)
Objects Metrics Predicates Metrics

(Config. A) (Config. B)

Strokes Number
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 200.4

0.5

0.6

0.7

0.4

0.5

0.6

0.7

0.8

Fig. 8: Ablation of model’s accuracy and precision under two injection
rate configurations and various numbers of input strokes.

however, as the number of injections increases, performance gains slow
and even plateau in predicate metrics after 10 strokes, especially in
terms of accuracy. This may be because an excessive number of stroke
features causes saturation or dilutes the original 3D scene information,
thereby introducing noise. As N increases, Config. A slightly outpaces
Config. B in terms of performance improvement velocity; however,
under both no-interaction and mass-interaction conditions, Config. B
achieve higher performance. It shows a high injection rate likely causes
the model to overemphasize stroke guidance while overlooking 3D
scene details, resulting in coarser predictions. In summary, under
Config. B with N from 5 to 10, the M6 model achieves the expected
performance.

5 USER STUDY

To evaluate the practical effectiveness and efficiency of SGSG, we
conducted a within-subject user study comparing ours with three SOTA
methods, as well as a naive SGSG without stroke interaction.

Participants We recruited 16 participants (10 males and 6 fe-
males), aged between 20 and 47, all with normal or corrected-to-normal
vision and prior experience with XR.

Conditions and Setup For the control conditions (CC), we se-
lected 3DSSG [35], SGFN [39], and JointSSG [38], referred to as CC1,
CC2, and CC3, respectively. In addition, a stroke-disabled SGSG was
included as CC4. Our full SGSG method served as the experimental
condition (EC). The hardware and software setup followed that de-
scribed in Sec. 4. Before the study, all participants received training on
XR device operation and task instructions.

Tasks Each participant completed tests under all five conditions
in randomized order. For each condition, participants freely navigated
the predicted scene graphs in space and corrected incorrect semantic
labels. In CC1–CC4, corrections were performed by hard correction,
clicking on incorrect labels and selecting candidates from a list using
the controller joystick. In EC, participants were additionally allowed to
use SGSG’s three type stroke-guidance interaction to assist in making
corrections. To avoid fatigue, each condition included 3 randomly
selected scenes, with a mandatory break of at least 2 minutes between
conditions. For each scene under every condition, we recorded user
controller actions count, task completion time, post-error rate, and
locomotion trajectory. The post-error rate was defined as the ratio
of incorrect labels remaining in the scene after user completed the
corrections. After completing each condition, participants reported
their perceived task load using four dimensions of the NASA-TLX [19]
questionnaire: mental demand, physical demand, effort, and frustration.

Results and Analysis The recorded metrics and Statistical analy-
sis is presented in Tab. 4. We conducted t-tests and computed Cohen’s
d as a measure of effect size [4] for each comparison between each
of CCs and EC. EC outperformed CC conditions across all metrics,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

Table 4: User study task performance for each condition.

Cond. ActionsCnt↓ p-value Cohen’s d Effect Size TaskTime (s)↓ p-value Cohen’s d Effect Size PostErrRate↓ p-value Cohen’s d Effect Size

EC 12.65 ± 7.07 48.81 ± 13.84 0.17 ± 0.11
CC1 21.87 ± 16.62 < 0.001∗ 0.72 Medium 54.79 ± 20.78 0.085 0.34 Small 0.23 ± 0.11 0.014∗ 0.49 Small
CC2 22.35 ± 14.96 < 0.001∗ 0.83 Large 54.91 ± 16.78 0.044∗ 0.40 Small 0.21 ± 0.09 0.043∗ 0.40 Small
CC3 15.04 ± 12.94 0.241 0.23 Small 49.74 ± 20.00 0.782 0.05 Very small 0.27 ± 0.10 < 0.001∗ 0.96 Large
CC4 21.09 ± 13.07 < 0.001∗ 0.81 Large 50.57 ± 24.14 0.648 0.09 Very small 0.18 ± 0.10 0.660 0.09 Very small

Cohen’s d effect sizes [4]: very small (<0.2), small (<0.5), medium (<0.8), large (<1.2), very large (<2.0), huge (≥2.0).

particularly in terms of actions count, where the effect size was large
compared to both the CC2 baseline (d = 0.83) and CC4 (d = 0.81)
methods. Regarding task completion time, EC achieved lower mean
compared to CC2 (d = 0.40, small effect size); no statistical evidence
supported significant differences when compared to other CCs. This
may be due to the time gain associated with stroke drawing, as the EC
group had a controller distance of 13.91, compared to 11.17 for CC2.
For post-error rate, EC significantly outperformed SOTA methods, with
a large effect size compared to the multimodal CC3 method (d = 0.96).
This result is likely due to the 2D key frames strategy used for 3D label
calibration, as users reported that some labels in CC3 were misaligned,
extending beyond the scene boundaries or being occluded, which likely
contributed to the higher post-error rate. User interaction behaviors
and task load are shown in Fig. 9. The EC used stroke guidance to
trade off hard corrections (visualized as green circles and red crosses
in Fig. 9(a), respectively), with a reduced actions count. In Fig. 9(b),
the task load box plot presents the mean results across four dimensions
NASA-TLX. EC reported a lower cognitive load, with significant differ-
ences observed when compared to CC1 (p < 0.001), CC2 (p = 0.004),
and CC4 (p = 0.021). These findings show that the stroke-guidance
strategy in SGSG is both effective and practical.

(a) Accumulated trajectories and actions coordinate in the sample scene.

(b) Task load.
Fig. 9: User study results. Box plot showing the distribution of user
ratings for each condition, with the means indicated by the white ‘×’
symbols and the medians by the pink lines inside the boxes.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduce SGSG, a Stroke-Guided Scene Graph generation approach
for interactive semantic refinement in 3D space. By constructing the
SGstrokes dataset and integrating three distinct XR stroke-guidance
paradigms, our method captures high-level guidance knowledge while
enabling both local and global corrections. We designed a model
that incorporates stroke guidance representation, a guidance injection
network, and intervention losses, including both consistency-repulsive
and geometry-sensitive constraints, resulting in improved prediction

accuracy and generalization. Experiments and the user study confirm
that SGSG outperforms SOTA methods in key metrics, establishing a
new benchmark for interactive 3D scene graph generation. This work
contributes to the XR community by enabling interactive semantic
modeling in immersive 3D environments, augmenting scene geometry
with structured semantic information and enriching scene understanding
for downstream XR applications with improved context and interaction
accuracy. SGSG further supports real-time feedback and correction,
opening up possibilities for immersive scene editing, context-aware
placement, and embodied intelligence tasks.

Despite these promising results, our approach has several limitations.
First, as an initial interactive prototype, it relies solely on human stroke
input, excluding other modalities such as traditional 2D images or nat-
ural language, or even more direct forms like gesture or gaze intent,
which could broaden its applicability. While our method is potentially
extensible to other modalities supported by XR devices with richer sen-
sory input, the current data collection lacks multi-modal annotations,
limiting benchmarking and integration into applications that involve
broader intent prediction. Second, the lightweight SGstrokes dataset
may not fully represent the range of real-world interactions and scene
configurations, especially in more complex or dynamic 3D environ-
ments. Its heuristic generation and parameter fitting lack adaptation
to diverse user stroke styles, which may limit generalization across
users. Lastly, handling evolving or open-ended scenes remains a chal-
lenge, where object delineation and relationships become increasingly
intricate both spatially and temporally. Trained on a closed dataset,
the model may not generalize well to incrementally expanding open
scenes with new elements, temporal object motion, or spatial occlusion,
highlighting the need for continual learning capabilities.

In future work, we plan to address these issues and further expand
SGSG. One direction involves developing more intuitive interactive
strategies by incorporating the aforementioned or other natural interac-
tion modalities for scene graph editing. Another area is semantic-driven
content generation, enabling the model to produce contextually mean-
ingful scene elements for applications such as indoor scene generation,
editing, or style transfer. Moreover, improving failure handling is impor-
tant for usability, such as when repeated interactions yield no response
or the correct label cannot be hit. Adding fallback mechanisms like
noisy feature clearing could further improve efficiency of XR-based in-
teractive generation applications. Implementing feedback loops where
scene graph drives adaptive downstream tasks also becomes feasible,
supporting embodied intelligence scenarios such as task navigation,
industrial assembly, and XR telepresence through real-time contextual
updates from the scene graph.

SUPPLEMENTARY MATERIAL

Supplementary material is available as a downloadable item in the IEEE
Xplore digital library associated with this paper. It briefly includes: (1)
stroke design and modeling details, (2) system performance analysis,
and (3) extended visual and quantitative analysis.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of
China through Project 61932003, 62372026, by Beijing Science and
Technology Plan Project Z221100007722004, by National Key R&D
plan 2019YFC1521102, and by the fundamental research funds for the
central universities.

REFERENCES

[1] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and
S. Savarese. 3d scene graph: A structure for unified semantics, 3d space,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

and camera. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 5664–5673, 2019. 2

[2] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann. A com-
prehensive survey of scene graphs: Generation and application. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(1):1–26,
2021. 2

[3] L. Chen, X. Wang, J. Lu, S. Lin, C. Wang, and G. He. Clip-driven
open-vocabulary 3d scene graph generation via cross-modality contrastive
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 27863–27873, 2024. 2

[4] J. Cohen. Statistical power analysis for the behavioral sciences. routledge,
2013. 8, 9

[5] A. Çöltekin, I. Lochhead, M. Madden, S. Christophe, A. Devaux, C. Pettit,
O. Lock, S. Shukla, L. Herman, Z. Stachoň, et al. Extended reality in
spatial sciences: A review of research challenges and future directions.
ISPRS International Journal of Geo-Information, 9(7):439, 2020. 2

[6] Y. Cong, W. Liao, H. Ackermann, B. Rosenhahn, and M. Y. Yang. Spatial-
temporal transformer for dynamic scene graph generation. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 16372–
16382, 2021. 2

[7] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner.
Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 5828–5839, 2017. 2

[8] Z.-C. Dong, W. Wu, Z. Xu, Q. Sun, G. Yuan, L. Liu, and X.-M. Fu.
Tailored reality: Perception-aware scene restructuring for adaptive vr
navigation. ACM Transactions on Graphics (TOG), 40(5):1–15, 2021. 2

[9] R. Fan, X. Shi, K. Wang, Q. Ma, and L. Wang. Scene-aware foveated
rendering. IEEE Transactions on Visualization and Computer Graphics,
2024. 2

[10] R. Fan, L. Wang, X. Liu, S. K. Im, and C. T. Lam. Real-scene-constrained
virtual scene layout synthesis for mixed reality. The Visual Computer,
40(9):6319–6339, 2024. 2

[11] T. Feng, W. Wang, X. Wang, Y. Yang, and Q. Zheng. Clustering based
point cloud representation learning for 3d analysis. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 8283–8294,
2023. 2

[12] G. Gao, W. Liu, A. Chen, A. Geiger, and B. Schölkopf. Graphdreamer:
Compositional 3d scene synthesis from scene graphs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 21295–21304, 2024. 1

[13] G. Gao, W. Liu, A. Chen, A. Geiger, and B. Schölkopf. Graphdreamer:
Compositional 3d scene synthesis from scene graphs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 21295–21304, 2024. 2

[14] Y. Ghasemi, H. Jeong, S. H. Choi, K.-B. Park, and J. Y. Lee. Deep
learning-based object detection in augmented reality: A systematic review.
Computers in Industry, 139:103661, 2022. 2

[15] G. Ghiasi, X. Gu, Y. Cui, and T.-Y. Lin. Scaling open-vocabulary im-
age segmentation with image-level labels. In European conference on
computer vision, pp. 540–557. Springer, 2022. 2

[16] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural
message passing for quantum chemistry. In International conference on
machine learning, pp. 1263–1272. PMLR, 2017. 2

[17] M. Grinberg. Flask web development. " O’Reilly Media, Inc.", 2018. 6
[18] H. Guo, H. Zhu, S. Peng, Y. Wang, Y. Shen, R. Hu, and X. Zhou. Sam-

guided graph cut for 3d instance segmentation. In European Conference
on Computer Vision, pp. 234–251. Springer, 2025. 2

[19] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load index):
Results of empirical and theoretical research. In Advances in psychology,
vol. 52, pp. 139–183. Elsevier, 1988. 8

[20] D. Honerkamp, M. Büchner, F. Despinoy, T. Welschehold, and A. Valada.
Language-grounded dynamic scene graphs for interactive object search
with mobile manipulation. IEEE Robotics and Automation Letters, 2024.
1, 2

[21] S. Koch, P. Hermosilla, N. Vaskevicius, M. Colosi, and T. Ropinski.
Lang3dsg: Language-based contrastive pre-training for 3d scene graph
prediction. In 2024 International Conference on 3D Vision (3DV), pp.
1037–1047. IEEE, 2024. 2

[22] S. Koch, P. Hermosilla, N. Vaskevicius, M. Colosi, and T. Ropinski.
Sgrec3d: Self-supervised 3d scene graph learning via object-level scene
reconstruction. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 3404–3414, 2024. 2

[23] S. Koch, N. Vaskevicius, M. Colosi, P. Hermosilla, and T. Ropinski.
Open3dsg: Open-vocabulary 3d scene graphs from point clouds with
queryable objects and open-set relationships. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14183–14193, 2024. 2

[24] C. Li, W. Li, H. Huang, and L.-F. Yu. Interactive augmented reality
storytelling guided by scene semantics. ACM Transactions on Graphics
(TOG), 41(4):1–15, 2022. 1

[25] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In
International conference on machine learning, pp. 12888–12900. PMLR,
2022. 2

[26] R. Li, S. Zhang, and X. He. Sgtr: End-to-end scene graph generation with
transformer. In proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 19486–19496, 2022. 2

[27] Y. Liu, C. Long, Z. Zhang, B. Liu, Q. Zhang, B. Yin, and X. Yang. Explore
contextual information for 3d scene graph generation. IEEE Transactions
on Visualization and Computer Graphics, 29(12):5556–5568, 2022. 2

[28] Z. Liu, J. Wu, L. Wang, X. Li, and S. K. Im. Proxy importance based haptic
retargeting with multiple props in vr. IEEE Transactions on Visualization
and Computer Graphics, 2024. 2

[29] Q. Ma, L. Wang, W. Ke, and S.-K. Im. Smigraph: a perceptually retained
method for passive haptics-based migration of mr indoor scenes. The
Visual Computer, pp. 1–21, 2023. 2, 5

[30] E. Pangilinan, S. Lukas, and V. Mohan. Creating augmented and virtual
realities: theory and practice for next-generation spatial computing. "
O’Reilly Media, Inc.", 2019. 2

[31] S. Peng, K. Genova, C. Jiang, A. Tagliasacchi, M. Pollefeys, T. Funkhouser,
et al. Openscene: 3d scene understanding with open vocabularies. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 815–824, 2023. 2

[32] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021. 2

[33] T. Tahara, T. Seno, G. Narita, and T. Ishikawa. Retargetable ar: Context-
aware augmented reality in indoor scenes based on 3d scene graph. In
2020 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), pp. 249–255. IEEE, 2020. 1

[34] J. Wald, A. Avetisyan, N. Navab, F. Tombari, and M. Nießner. Rio:
3d object instance re-localization in changing indoor environments. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 7658–7667, 2019. 2, 4

[35] J. Wald, H. Dhamo, N. Navab, and F. Tombari. Learning 3d semantic scene
graphs from 3d indoor reconstructions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3961–3970,
2020. 2, 6, 7, 8

[36] X. Wang, Q. He, J. Liang, and Y. Xiao. Language models as knowledge
embeddings. arXiv preprint arXiv:2206.12617, 2022. 2

[37] A. Werby, C. Huang, M. Büchner, A. Valada, and W. Burgard. Hier-
archical open-vocabulary 3d scene graphs for language-grounded robot
navigation. In First Workshop on Vision-Language Models for Navigation
and Manipulation at ICRA 2024, 2024. 1

[38] S.-C. Wu, K. Tateno, N. Navab, and F. Tombari. Incremental 3d seman-
tic scene graph prediction from rgb sequences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5064–5074, 2023. 2, 6, 7, 8

[39] S.-C. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari. Scenegraphfu-
sion: Incremental 3d scene graph prediction from rgb-d sequences. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7515–7525, 2021. 2, 3, 4, 5, 6, 7, 8

[40] P. Xu, X. Zhu, and D. A. Clifton. Multimodal learning with transformers:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(10):12113–12132, 2023. 2

[41] X. Yan, Z. Yuan, Y. Du, Y. Liao, Y. Guo, S. Cui, and Z. Li. Compre-
hensive visual question answering on point clouds through compositional
scene manipulation. IEEE Transactions on Visualization and Computer
Graphics, 30(12):7473–7485, 2023. 2

[42] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh. Graph r-cnn for scene
graph generation. In Proceedings of the European conference on computer
vision (ECCV), pp. 670–685, 2018. 2

[43] H. Ye, J. Leng, C. Xiao, L. Wang, and H. Fu. Proobjar: Prototyping
spatially-aware interactions of smart objects with ar-hmd. In Proceedings

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

of the 2023 CHI Conference on Human Factors in Computing Systems, pp.
1–15, 2023. 2

[44] G. Zhai, E. P. Örnek, S.-C. Wu, Y. Di, F. Tombari, N. Navab, and B. Busam.
Commonscenes: Generating commonsense 3d indoor scenes with scene
graphs. Advances in Neural Information Processing Systems, 36, 2024. 1

[45] C. Zhang, J. Yu, Y. Song, and W. Cai. Exploiting edge-oriented reasoning
for 3d point-based scene graph analysis. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9705–9715,
2021. 2

[46] S. Zhang, A. Hao, H. Qin, et al. Knowledge-inspired 3d scene graph
prediction in point cloud. Advances in Neural Information Processing
Systems, 34:18620–18632, 2021. 2

[47] Y. Zhang, Y. Pan, T. Yao, R. Huang, T. Mei, and C.-W. Chen. Learn-
ing to generate language-supervised and open-vocabulary scene graph
using pre-trained visual-semantic space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2915–2924,
2023. 2

[48] Q. Zheng, L. Wang, W. Ke, and S. K. Im. Vvir-om: Efficient object
manipulation in vr with variable virtual interaction region. International
Journal of Human–Computer Interaction, pp. 1–14, 2023. 2

[49] K. Zhou, C. Chen, Y. Ma, Z. Leng, H. P. Shum, F. W. Li, and X. Liang.
A mixed reality training system for hand-object interaction in simulated
microgravity environments. In 2023 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pp. 167–176. IEEE, 2023. 2

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3616751

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 23,2025 at 07:44:13 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Semantic Scene Graph Generation
	Scene Graph Prediction with Structural Cues
	Scene Graph for Spatial Computing

	Method
	Main Methodology
	Stroke Guidance Representation
	Stroke Definition
	Implicit Temporal Feature Representation
	Explicit Spatial Feature Representation
	Stroke Classification

	Guidance Injection Network
	Strokes Guidance Feature Alignment
	Strong Guidance Injection
	Weak Guidance Injection

	Training Setup
	SGstrokes Dataset
	Core Losses
	Intervention Losses

	Experiments
	Implementation Details
	Results and Analysis
	Qualitative Comparison
	Quantitative Comparison

	Ablation Studies

	User Study
	Conclusion, Limitations, and Future Work

