Cognitive Load/flow and Performance in Virtual Reality Simulation Training of Laparoscopic Surgery

Peng Yu †
Beihang University
PengCheng Lab

Junjun Pan † *
Beihang University
PengCheng Lab

Zhaoxue Wang †
Beijing Normal University

Yang Shen
Beijing Normal University

Lili Wang
Beihang University

Jialun Li
Beihang University

Aimin Hao
Beihang University
PengCheng Lab

Haipeng Wang
Beijing Aerospace General Hospital

Abstract
VR based laparoscopic surgical simulators (VRLS) are increasingly popular in training surgeons. However, they are validated by subjective methods in most research. In this paper, we resort to physiological approaches to objectively research quantitative influence and performance analysis of VRLS training system. The results show that the VRLS could highly improve medical students' performance (p < 0.01) and enable the participants to obtain flow experience with a lower cognitive load. The performance of participants is negatively correlated with cognitive load through quantitatively physiological analysis.

Index Terms: Human-centered computing—Human computer interaction—User Evaluation—

1 INTRODUCTION
Traditional laparoscopic surgical training usually utilizes the training box within vitro animals or corpses organs, which could give rise to negative effects, such as high cost, low reusability, and related ethical issues. The VR surgical simulator has changed the surgeons learning mode by simulating the surgery from the visual, auditory, and tactile aspects. Many scholars validated the effectiveness of VR based laparoscopic surgery simulators (VRLS) using subjective methods [4]. In this paper, we resort to physiological approaches to objectively and quantitatively measure the influence of VRLS on medical students from the aspect of cognitive load and flow.

At present, the main cognitive load measurement methods are subjective measures such as NASA-TLS scale. The most commonly used methods to measure flow experience are retrospective questionnaires and interviews [6]. The main advantages of the psychophysiological measurement of cognitive load are its objective, the sensitivity to different cognitive processes, the non-interference of the program, and their implicitness and continuity. EEG is considered a physiological indicator, which can be used as an online and continuous cognitive load measurement method to detect subtle fluctuations in instantaneous load. Measuring the changes in alpha and theta brainwave rhythms reflects what happens in the participant’s information processing situation, even if the participant does not know these changes or cannot express them in words [2].

2 MATERIALS AND METHODS

2.1 Participants and Procedures
In this study, we recruited 41 medical students between 17 and 27 years old (21.10 ± 2.79, 15 male and 26 female). The whole experiment consists of three main steps. Firstly, the participants were required to conduct a pre-test on a training box. The pre-test contains three fundamental surgery skills tasks and one colon resection task (Pre-CRT). During the operation, we recorded the heart rate and EEG data, using Polar H10 heart rate monitor chest strap and Muse 2 brain wave monitor respectively. Besides, the whole procedure was recorded as videos. Secondly, the participants were asked to conduct the same kind of tasks on VRLS. Everyone had to complete 4 trials within a week, and each trial lasts about 30 minutes. Finally, we required our participants to conduct the post-test. The post-test (Post-FT and Post-CRT) is the same as the pre-test. After finishing all experiments, participants were asked to complete four questionnaires regarding the cognitive load and flow experience. We utilize the NASA-TLX scale to measure the cognitive load. To measure the...
flow experience during the experiments, we combine two scales from EGame scale [3] and Cheng’s scale [5] and redesigned the questions according to our experiments.

The VR laparoscopic simulator (Fig. 2 right two columns) was developed by State Key Lab of VR Tech & Syst of Beihang University. The simulator consists of two major components. The first component a high-performance PC connected with a touch-screen monitor. The second component is the simulation module, which contains two surgical handlers connected with haptic devices and a navigation camera in a box. Two-foot pedals were utilized to activate the electrosurgical coagulation during surgery training.

2.2 Data Processing
In this study, we obtain three types of data. The first is the performance scores computed from recorded videos according to the GOALS standards for colon resection task and our designed measure rules (e.g. completion time, number of mistakes, etc.) for fundamental surgery skill tasks. The second is the physiological data extracted from heart rate and EEG. The performance scores and physiological data need to be processed before getting meaningful information. The third is the self-reported scores including cognitive load scores and flow experience scores computed from questionnaires.

For performance scores, the fundamental surgery skill tasks and colon resection tasks are measured from different dimensions. The scores of each dimension are normalized and scaled to $[0, 10]$, then we obtain the final performance score by the sum of all items.

For physiological data, we filtered the EEG data according to four frequency spectrums. The post cognitive load is significantly lower than the pre-test procedure ($p < 0.05$). For Pre-FT task, it also shows negative relation but not significant ($R^2 = 0.74, p = 0.3$). For Pre-CRT, the cognitive load score is significantly negatively related with the performance score ($R^2 = 0.74, p < 0.001$). The negative relation is also shown in Post-CRT ($R^2 = 0.61, p = 0.05$).

4 Conclusion
In this paper, we quantitatively investigate the influence of VRLS on medical students from three aspects: performance evaluation, physiology (heart rate and EEG) and self-reported cognitive load and flow experience. The experimental results demonstrate that the VRLS could highly improve medical students’ performance and enable the participants to obtain flow experience with a lower cognitive load.

Acknowledgments
This research is supported by National Key R&D Program of China (No. 2018YFC0115102), National Natural Science Foundation of China (Nos. 61872020, U20A20195). We also thank the Faculty of Media and Communication, Bournemouth University (UK) with its support of Global Visiting Fellowship for Dr. Junjun Pan.

References