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Fig. 1: Many-lights illumination effects rendered by stochastic lightcuts method with 2048 light samples per pixel (left), our method
with 5.6 average light samples per pixel (middle), and stochastic lightcuts method using the same rendering time as our method
(right) in Study. Compared with stochastic lightcuts (SLe) using the same rendering time as our method, our method achieves 5.3×
smaller mean squared error (MSE) in the foveal region (Ours vs SLe, 2.47×10−2 vs 13.21×10−2), and 2.3× smaller MSE in the
peripheral region (Ours vs SLe, 1.67×10−2 vs 3.86×10−2).

Abstract—Foveated rendering provides an idea for accelerating rendering algorithms without sacrificing the perceived rendering
quality in virtual reality applications. In this paper, we propose a foveated stochastic lightcuts method to render high-quality many-lights
illumination effects in high perception-sensitive regions. First, we introduce a spatiotemporal-luminance based lightcuts generation
method to generate lightcuts with different accuracy for different visual perception-sensitive regions. Then we propose a multi-resolution
light samples selection method to select the light sample for each node in the lightcuts more efficiently. Our method supports
full-dynamic scenes containing over 250k dynamic light sources and dynamic diffuse/specular/glossy objects. It provides frame rates
up to 110fps for high-quality many-lights illumination effects in high perception-sensitive regions of the HVS in VR HMDs. Compared
with the state-of-the-art stochastic lightcuts method using the same rendering time, our method achieves smaller mean squared errors
in the fovea and periphery. We also conduct user studies to prove that the perceived quality of our method has a high visual similarity
with the results of the ground truth rendered by using the stochastic lightcuts with 2048 light samples per pixel.

Index Terms—Virtual Reality, Foveated Rendering, Lightcuts, Many-lights Rendering

1 INTRODUCTION

Virtual reality (VR) technology gives us a new way to perceive the
world. By wearing VR near-eye display devices, such as VR head-
mounted displays (HMDs), users can immersively explore and interact
with the virtual environment. Since the visual latency tolerance thresh-
old of the Human Visual System (HVS) is around 13ms [23], excessive
rendering latency in the HMD can lead to inconsistencies between what
the user observes and the interaction, causing discomfort. Therefore,
improving the performance of rendering algorithms is a critical factor
in promoting the practicality of VR technology.

Foveated rendering is an accelerated rendering technology that as-
signs computing resources to different visual perception-sensitive re-
gions of the HVS. To speed up rendering without sacrificing the per-
ceived visual rendering quality, it allocates more computing resources

• Lili Wang is with State Key Laboratory of Virtual Reality Technology and
Systems, Beihang University, Beijing, China; Peng Cheng Laboratory,
Shengzhen, China; and Beijing Advanced Innovation Center for Biomedical
Engineering, Beihang University, Beijing, China. Lili Wang is the
corresponding author. E-mail: wanglily@buaa.edu.cn.

• Xuehuai Shi, Jian Wu, Runze Fan, and Aimin Hao is with State Key
Laboratory of Virtual Reality Technology and Systems, School of Computer
Science and Engineering, Beihang University, Beijing, China. E-mail:
shixuehuaireal@buaa.edu.cn, lanayawj@buaa.edu.cn,
BY2106131@buaa.edu.cn, ham@buaa.edu.cn.

to high perception-sensitive regions of the HVS and fewer computing
resources to low perception-sensitive regions. In addition, recent stud-
ies show that high perception-sensitive regions in foveated rendering
contain not only the foveal region but also some regions with high
salient features [26] and high luminance-contrast features [29] in the
periphery.

The existing foveated rendering algorithms can render dynamic
scenes with multiple materials, but can not render scenes with a large
number of dynamic light sources at high frame rates. Stochastic light-
cuts method [41] can render the scene that contains a large number of
light sources at interactive frame rates. However, this method fails to
meet the visual latency tolerance threshold of HVS in HMDs, i.e., the
rendering time per frame for both eyes is about 13ms. This is because
in order to render high-quality illumination effects, the stochastic light-
cuts method needs to generate accurate lightcuts for each pixel, and
each node in the lightcuts needs to perform light tree traversal to select
the light sample, which is time-consuming, especially for rendering
in HMDs. To further improve the rendering performance of lightcuts,
the foveated rendering framework can be used. However, it brings two
challenges. The first one is how to generate lightcuts with different
accuracy for different visual perception-sensitive regions without sacri-
ficing the perceived rendering quality. The second one is how to select
the light sample for each node in the lightcuts more efficiently without
performing the light tree traversal for each node.

In this paper, we propose a foveated stochastic lightcuts method
to address these two challenges. For the first one, we propose a
spatiotemporal-luminance based lightcuts generation method. Our



method first extracts the foveated spatiotemporal feature map (FSFM)
and the foveated luminance feature map (FLFM) according to the cur-
rent view. Then it uses a 3D Gaussian filter to simulate the reduction of
the spatiotemporal and luminance features for each pixel without per-
ceived loss, and constructs a spatiotemporal-luminance based foveated
perceptual sensitivity map ( FPSM) to store the result of each pixel’s
standard deviation of the 3D Gaussian filter. After that, it generates
the lightcuts with different accuracy for each pixel based on the cor-
responding value in the FPSM. To solve the second problem, we
introduce a multi-resolution light samples selection method, which uses
the low-resolution light samples selected in low-resolution rendering
and chooses new high-resolution light samples to illuminate the scene
according to the FPSM.

We compare the monocular images rendered by stochastic lightcuts
with 2048 light samples per pixel, our method, and stochastic lightcuts
(SLe) which uses the same rendering time as our method. The result
shows that our method achieves 1.9-5.3× smaller mean squared error
(MSE) in the foveal region, and 1.2-2.3× smaller MSE in the peripheral
region compared with SLe. Our method achieves 53-110fps for both
eyes with an HTC Cosmos and supports full-dynamic scenes with
diffuse/specular/glossy objects and over 250k dynamic light sources.
We also conduct user studies to prove that the perceived quality of our
method has a high visual similarity with the result of the ground truth
rendered by using the stochastic lightcuts with 2048 light samples per
pixel. We refer readers to our supplementary video. Figure 1 shows
the comparison in Study. Our method shows better illumination effects
than SLe in both the foveal and peripheral regions. The region in the
blue circle is the foveal region. Details in rectangular regions are
magnified to the right of each rendered image, the magnification of the
red rectangular region in the foveal region is placed in the upper right,
and the magnification of the green rectangular region in the peripheral
region is placed in the lower right. In the red rectangular region, the
green and red lighting from the screen onto the book is not smooth
in the result of SLe. In the green rectangular region, the illumination
effects from the yellow light that shade on the desktop have many noisy
points in the result of SLe.

In summary, the contributions of our method are as follows:

• A foveated stochastic lightcuts method to render high-quality
illumination in high perception-sensitive regions at high frame
rates in HMDs, supporting full-dynamic scenes with over 250k
dynamic light sources and diffuse/specular/glossy objects;

• A spatiotemporal-luminance based lightcuts generation method,
which generates lightcuts with different accuracy for different vi-
sual perception-sensitive regions without sacrificing the perceived
rendering quality;

• A multi-resolution light samples selection method, which selects
the light sample for each node in the lightcuts more efficiently.

2 RELATED WORK

In this section, we first introduce the prior work of foveated 3D render-
ing (FR) in recent years, then discuss the lightcuts generation methods,
and discuss the light samples selection methods.

2.1 Foveated 3D Rendering
Guenter et al. [12] introduced a rasterization-based foveated rendering
system to improve rasterization’s rendering performance, demonstrat-
ing that users cannot perceive the degradation of rendering quality
from foveated rendering in this system by very detailed perceptual
experiments. It is an essential milestone in FR, and research in FR
after this work tended to improve the rendering performance without
visual perceived loss. Research in FR can be grouped into several cate-
gories according to the acceleration strategies: multi-spatial resolution,
level of details (LOD), multi-color resolution, and multi-illumination
resolution.

Multi-spatial resolution based FR reduces the pixel density in the
output image from the high visual perception-sensitive region to the low

visual perception-sensitive region of the HVS. Guenter et al. [12] gen-
erated the 3-layer image with different resolutions in one rasterization
pipeline and composited them to generate the final foveated rendering
result. Patney et al. [21] designed a foveated rendering system based on
coarse pixel shading (CPS), which can reduce the number of shadings
by up to 70%, and then introduced a novel anti-aliasing algorithm. This
anti-aliasing algorithm can help recover the details of the peripheral
region that are resolvable by human eyes but are degraded by filter-
ing. As CPS pipelines require adaptive shading features which are
not yet commonly available on commodity GPUs, Meng et al. [17]
presented a simple two-pass kernel foveated rendering pipeline that
maps well onto modern GPUs. Stengel et al. [26] introduced a foveated
sampling method for rasterization, and then integrated the sampling
method into the deferred shading pipeline. Turner et al. [28] aligned
the rendered pixel grid to the virtual scene content during rasterization
and upsampling, which reduced the detectability of motion artifacts in
the periphery without complex interpolation or anti-aliasing algorithms.
Friston et al. [11] presented a rasterization pipeline that achieved the
foveated rendering in one rasterization pass with per-fragment ray-
casting. Meng et al. [16] accelerated the foveated rendering in HMDs
with more aggressive foveation based on the theory of ocular domi-
nance. Bastani et al. [2] rendered an intermediary image of the 3D scene
in the intermediary compressed space and unwarped the intermediary
image to generate the foveated image. Franke et al. [10] presented
a foveated rendering method that comprised recycling pixels in the
periphery by spatiotemporally reprojecting them from the previous
frames to accelerate rendering performance.

LOD-based FR adapts the complexity of 3D models to different
visual perception-sensitive regions of the HVS, which renders the high
visual perception-sensitive region with the high-quality geometry and
the low visual perception-sensitive region with the simplified geometry.
Recent research on LOD-based FR focused on designing user studies
to optimize or select the various parameters involved in the previous
methods or refine the previous methods instead of proposing new meth-
ods. Swafford et al. [27] proposed practical rules for LOD-based FR
methods to achieve significant performance gains with user studies and
the newly proposed rendering quality metrics. Lindeberg et al. [15]
proposed a gaze-contingent depth of field tessellation that applies tes-
sellation to all objects within the focal plane, gradually decreasing
tessellation levels as applied blur increases. Zheng et al. [43] adap-
tively adjusted tessellation levels and culling region based on visual
sensitivity. Young et al. [39] adjusted the size and shape of the foveal
region for correcting the gaze tracing error or state parameters and
combined this technique with LOD to render foveated images. Stafford
et al. [25] selectively filtered the images in the peripheral region to
reduce visual artifacts due to contrast resulting from the lower LOD
before compositing foveated images for presentation.

Multi-color resolution based FR degrades the chromatic fidelity in
the low visual perception-sensitive region to accelerate the rendering
performance. Duchowski et al. [8] proposed a foveated chromatic
degradation framework, which constructed the color degradation map-
ping for a gaze-contingent display to evaluate the spatio-chromatic
peripheral sensitivity. Multi-illumination resolution based FR reduces
the quality of illumination in the low visual perception-sensitive region
to simplify the work per pixel from the high visual perception-sensitive
region to the low visual perception-sensitive region. Stengel et al. [26]
presented a luminance map to adjust the sampling probability in the
peripheral region to obtain the shading samples that can effectively
shade the important features of the image. Tursun et al. [29] proposed a
luminance-contrast-aware foveated rendering technique that improves
the computational savings of foveated rendering by analyzing the local
luminance contrast of the image. Wang et al. [34] proposed the foveated
instant radiosity method that casts more VPLs to illuminate the foveal
region so that more accurate global illumination effects in the foveal
region and less accurate global illumination in the peripheral region can
be rendered. Yang et al. [38] improved the method proposed by Wang et
al. [34] and created a CMF-based perceptual probability map to manage
virtual point lights more accurately to further improve the rendering
quality in the fovea. Shi et al. [24] adopted the photon mapping method



Fig. 2: Pipeline of Our Method
to foveated rendering framework, which can render high-quality global
illumination effects in the foveal region at interactive frame rates for the
scenes that include diffuse, specular, glossy, and transparent materials.

Since the high visual perception-sensitive region in the HVS includes
not only the foveal region but also some regions with high salient fea-
tures [26] and high luminance-contrast features [29] in the periphery.
The above multi-illumination resolution based foveated rendering meth-
ods did not consider performing high-quality illumination rendering in
the high perception-sensitive region in the periphery, which can further
improve the quality of foveated rendering. We propose a foveated
stochastic lightcuts method, which renders high-quality many-lights
illumination in high perception-sensitive regions at high frame rates.

2.2 Lightcuts Generation Methods
Walter et al. [32] firstly proposed the general lightcuts for many-lights
rendering. To improve the quality and accelerate rendering, researchers
worked on lightcuts generation methods to generate lightcuts based on
various evaluation criteria.

Walter et al. [31] introduced the multi-dimensional lightcuts method,
which generates the multi-dimensional lightcuts for each pixel, and
each dimension of the multi-dimensional lightcuts is used to achieve
different rendering effects, such as temporal blur, depth of field, vol-
umetric effects, and anti-aliasing, etc. They also [33] extended the
multi-dimensional lightcuts method, and proposed the bidirectional
lightcuts method that uses recursive eye tracing to connect more virtual
point lights for generating lightcuts, and the new path weighting strat-
egy to support rendering more materials, such as glossy, volumetric,
and subsurface materials. Davidovič et al. [6] progressively generated
the lightcuts to converge the illumination shaded by lightcuts to the
correct solution with a bounded memory footprint. Wang et al. [35]
used an out-of-core GPU implementation that generates lightcuts more
efficiently for rendering large scenes. Yuksel et al. [42] introduced
the lighting grid hierarchy method that generates multiple illumination
representations of the scene with different resolutions, and used an
evaluation criterion combining distance and resolution to generate light-
cuts for rendering explosions with self-illumination. Yuksel [40, 41]
removed the representative lights of all nodes in the traditional light-
cuts [32], and randomly picked a light source in the leaf node within
the given subtree using an importance sampling scheme to evaluate
the node in the step of lightcuts generation. Compared with the tradi-
tional lightcuts, this method can perform many-lights rendering more
efficiently and temporally stably.

However, the above methods did not consider combining the vi-
sual perceptual features of the HVS with the lightcuts generation. To
accelerate the performance of illumination rendering with lightcuts
without visual perceived loss, we propose a spatiotemporal-luminance
based lightcuts generation method that generates lightcuts with different
accuracy in different perception-sensitive regions.

2.3 Light Samples Selection Methods
Generating lightcuts by evaluating the importance criteria is not accu-
rate enough, especially when the lightcuts contain nodes near the root.

In order to improve the rendering quality, light samples selection for
generated lightcuts is exploited for lightcuts methods.

Conty et al. [5] proposed the adaptive splitting heuristic method,
which uses stochastic traversal from nodes in each lightcuts to leaves to
select the actual lights, and determines the splitting during the traversal
by a variance based on intensity and distance. Moreau et al. [18]
extended this method with a two-level hierarchy for fast updates in
dynamic scenes. Yuksel [40, 41] proposed the hierarchical importance
sampling method to select the light for each node in the lightcuts, and
introduced a new node probability formulation based on the geometry,
material, intensity, and distance terms to obtain better temporal stability.
However, if the shading point and the node are in the same bounding
box, the distance term part of the node probability formulation and the
expected illumination of the node will change from a correct positive
relationship to an inverse relationship, thus reducing the sampling
quality. Lin et al. [14] proposed a new distance term formulation that
can mitigate this weakness and thus improve the sampling quality.

To further improve the performance of the light samples selection,
we propose a multi-resolution light samples selection method. It uses
the low-resolution light samples selected in the low-resolution render-
ing step and chooses new high-resolution light samples to illuminate
the scene according to the FPSM.

3 FOVEATED STOCHASTIC LIGHTCUTS

In order to improve the performance of rendering scenes with many
dynamic lights for VR applications without sacrificing the perceived
rendering quality, we propose a foveated stochastic lightcuts method.
Stochastic lightcuts [41] is an important algorithm for many-lights
rendering, but it is not efficient enough for VR applications. Our
method differs from the stochastic lightcuts method in two aspects: one
is that our method has lightcuts with different accuracy for different
perception-sensitive regions to improve the performance without sac-
rificing the perceived rendering quality, while the stochastic lightcuts
method has lightcuts with the same accuracy for all regions; the other is
that our method selects the light sample for each node in the lightcuts
more efficiently without performing the light tree traversal for each
node, while the stochastic lightcuts method needs to traverse the light
tree for all nodes in the lightcuts.

Figure 2 visualizes the pipeline of our method. There are five steps
in our method. Step 1 is the light tree construction, which constructs the
light tree for the scene. Step 2 is the buffers rendering, which renders
the buffers that are used in the next steps. Step 3 is the spatiotemporal-
luminance based lightcuts generation, which generates lightcuts with
different accuracy for different regions. Step 4 is the multi-resolution
light samples selection, which selects light samples for rendering the
diffuse illumination. Step 5 is the illumination rendering, which renders
the diffuse, glossy and specular illumination effects for the current
frame and outputs the final rendering result. For demonstrating the
details of the steps, we give Algorithm 1.

The inputs of Algorithm 1 are the 3D scene S, the viewpoint of
the current frame V , the viewpoint of the previous frame V ′, the gaze
position of the current frame pos f and the previous frame pos′f , the



full resolution of the output framebuffer (w,h), the low-resolution
(w′,h′), the maximum number of light samples per pixel MAXlspp, the
maximum number of ray samples per pixel MAXrspp. The output of
Algorithm 1 is the framebuffer f b.

In Algorithm 1, we first use the perfect binary light tree construction
method proposed in Lin et al. [14] to construct the light tree tree to
represent the illumination in the 3D scene S (line 2). Then we use
the visual acuity fall-off function proposed by Stengel et al. [26] to
construct the foveated visual acuity feature map f b f (line 3). We use the
method proposed in Stengel et al. [26] to construct the spatiotemporal
feature map from the G-buffer FBg based on S, the viewpoint of the
current frame V , the viewpoint of the previous frame V ′, and the full
resolution of the output framebuffer (w,h) (line 4). FBg includes
the normal buffer f bn, the albedo buffer f ba, and the velocity buffer
f bv of the current frame. Each pixel in f bn stores the normal of the
corresponding pixel in the current framebuffer f b, so as to f ba stores
the albedo, and f bv stores the velocity of the pixel’s hitpoint moving
through space. Our method also needs the luminance feature to guide
lightcuts generation and light samples selection. We find that extracting
the luminance feature from the low-resolution framebuffer is effective
and efficient, and the low-resolution lightcuts and light samples can
be reused in the light samples selection. Thus we perform the low-
resolution rendering by directly using the method proposed by Yuksel
et al. [41] to generate the low-resolution framebuffer f b′, the low-
resolution lightcuts set LC′, and the low-resolution light samples set
LS′ based on S, tree, V , the low-resolution (w′,h′) (line 5). (w′,h′) is
set as (w

8 ,
h
8 ) in our method.

Algorithm 1: Foveated Stochastic Lightcuts
input :3D scene S, viewpoint of current frame V , viewpoint

of previous frame V ′, gaze position of current frame
pos f , gaze position of previous frame pos′f , full
resolution of the output framebuffer (w,h), low
resolution (w′,h′), maximum number of light
samples per pixel MAXlspp, the maximum number of
ray samples per pixel MAXrspp

output :output framebuffer f b

1 for each f rame do
2 // Light Tree Construction
3 tree← constructLightTree(S)
4 // Buffers Rendering

5 f b f ← FBu f f erRender(V , V ′, pos f , pos′f , w, h)
6 FBg ← GBu f f erRender(S, V , V ′, w, h)
7 f b′, LC′, LS′ ← lowResRender(S, tree, V , w′, h′)
8 // Spatiotemporal-luminance based Lightcuts Generation

9 map← genPerMap(S, FBg, f b f , f b′, w, h)
10 LC← genLightcuts(S, tree, map, MAXlspp, V , w, h)
11 // Multi-resolution Light Samples Selection

12 LS← selectLights(S, tree, map, LC′, LS′, LC, V , w, h)
13 // Illumination Rendering
14 f b, f bd , f bm ← initFrameBu f f er(w, h)
15 f bd ← lightShading(S, LS, V , w, h)
16 if hasMetallicOb j(S) then
17 f bm ← FoveatedPT (S, map, MAXrspp, V , w, h)
18 end
19 f b← f bd + f bm
20 end

Then we perform the spatiotemporal-luminance based lightcuts gen-
eration method to construct the FPSM map and generate the lightcuts
for each pixel with different accuracy (lines 6-7), and the details are in
Section 3.1. After that, we perform the multi-resolution light samples
selection method to select light samples for all lightcuts in LC and
stores them in the light samples set LS based on S, tree, map, LC′, LS′,
V , and (w,h) (line 8), and the details are in Section 3.2.

Finally, we perform the rendering step to generate the output frame-
buffer f b for the current frame (lines 9-13). Firstly, we initialize f b,
the diffuse framebuffer f bd , and the metallic framebuffer f bm as empty

based on (w,h) (line 9). Then we perform the traditional light shading
method [32] to shade each pixel’s diffuse illumination and store the
result in f bd based on S, LS, V , and (w,h) (line 10). If there are glossy
or specular objects in S, we implement the foveated path tracing to
render the glossy reflection effects of each pixel and store the result in
f bm based on S, map, the maximum number of ray samples per pixel
MAXrspp, V , and (w,h) (lines 11-12). The foveated path tracing is the
one-bounced path tracing [13] with the guidance of map. Specifically,
for each pixel px in f bm, the ray samples per pixel (rspp) of px imple-
mented in the foveated path tracing is MAXrspp · map[px]. The value
of each pixel in f b is obtained by adding the value of the corresponding
pixel in f bd to the value of the corresponding pixel in f bm (line 13).

3.1 Spatiotemporal-luminance based Lightcuts Genera-
tion

The motivation of the spatiotemporal-luminance based lightcuts gen-
eration method is to generate the lightcuts with different accuracy for
different visual perception-sensitive regions according to the guidance
of the spatiotemporal and luminance sensitivity of the HVS. Using the
lightcuts with low accuracy for rendering in the low visual perception-
sensitive region can improve the rendering performance without sacrific-
ing the perceived rendering quality. Therefore, our method is different
from the stochastic lightcuts method, which uses the lightcuts with the
same accuracy to render all regions.

Using the HVS to guide lightcuts generation directly will lead to
low-quality rendering in high perception-sensitive regions in the pe-
riphery of the HVS, which reduces the perceived rendering quality
of users. Our spatiotemporal-luminance based lightcuts generation
method identifies different perception-sensitive regions of the HVS,
and then generates the lightcuts with high accuracy for high perception-
sensitive regions to improve the perceived rendering quality of users.
Our spatiotemporal-luminance based lightcuts generation method has
two steps, the first step is to construct the FPSM, and the second step
is to generate the lightcuts according to the FPSM. In the step of the
FPSM construction, we first extract FSFM and FLFM from the G-
buffer and the low-resolution framebuffer. Then we use a 3D Gaussian
filter to merge FSFM and FLFM, and simulate the reduction of the
merged feature value within the maximum imperceptibility threshold
α . Finally, the standard deviation of the 3D Gaussian filter is used to
calculate the value in the FPSM. In the lightcuts generation step, for
each pixel in the output framebuffer, we multiply the corresponding
pixel value in the FPSM by a constant value to get the limited number
of nodes required for this pixel’s lightcuts. Then we use the criterion
introduced in [41] to approximate lightcuts with the limited number of
nodes.

The adaptive foveated sampling method proposed in Stengel et
al. [26] can efficiently extract the spatiotemporal feature based on
the integration of the buffers in G-buffer. Thus, we use the adaptive
foveated sampling method [26] to extract FSFM, but we don’t use it to
guide foveated rendering directly as Stengel et al. [26] did. Since HVS
not only has the spatiotemporal sensitivity but also has the luminance
sensitivity, we further extract FLFM based on the luminance of the
current scene. We combine FSFM and FLFM to construct FPSM,
which is used to guide the lightcuts generation.

After obtaining the spatiotemporal and luminance features, a straight-
forward method is to use the maximum value between spatiotemporal
and luminance features to guide the generation of lightcuts with differ-
ent accuracy. However, this may lead to the generation of high-accuracy
lightcuts in the regions with very low spatiotemporal sensitivity but
very high luminance sensitivity or very high spatiotemporal sensitivity
but very low luminance sensitivity in the periphery, which may reduce
the rendering performance. We use the 3D Gaussian filter to simulate
the reduction of the foveated spatiotemporal and luminance features,
which brings two advantages. The first one is that the 3D Gaussian
filter can naturally merge the features in the first and second dimen-
sions to generate the filtered feature in the third dimension. So we
use the 3D Gaussian filter to merge the foveated spatiotemporal and
luminance features and generate the filtered spatiotemporal-luminance
feature. The second one is that the standard deviation of a Gaussian



filter means the difference between the filtered feature and the original
features, i.e., the degree of the original features’ reduction. So we
seek a 3D Gaussian filter with the maximum standard deviation ρ to
simulate the maximum imperceptible reduction of the features on each
pixel within the maximum imperceptibility threshold α . Then, ρ of
the 3D Gaussian filter of each pixel is used to construct FPSM. FPSM
describes the maximum reduction of the foveated spatiotemporal and
luminance features that are acceptable to HVS on each pixel. For each
pixel, more reduction of the features leads to more aggressive rendering
quality reduction, so the lower precise lightcuts can be used to shade
this pixel.

Fig. 3: Pipeline of FPSM Construction
Figure 3 describes the pipeline of FPSM construction. It inputs

the G-buffer FBg, the foveated visual acuity feature map f b f , and
the low-resolution framebuffer f b′ of the current frame, outputs the
FPSM Map. FBg includes the normal buffer f bn, the albedo buffer
f ba, and the velocity buffer f bv of the current frame. Each pixel in the
foveated visual acuity feature map f b f stores the visual acuity value of
the eccentricity corresponding to this pixel on the visual acuity fall-off
function proposed by Stengel et al. [26]. There are two substeps in the
FPSM construction.

In substep 1, we extract two foveated feature maps: FSFM f bst
and FLFM f bl . For each pixel p, we use Equation 1 introduced in
[26] to extract f bst(p). Because with Equation 1 we can extract the
spatiotemporal feature of p efficiently by integrating the buffers in
G-buffer, and combining it with the foveated visual acuity feature map
directly. The feature value of each pixel p in f bst is calculated by the
following equation:

f bst(p) = max( f b f (p),O f bn(p),O f ba(p),O f bv(p)) (1)

where f b f (p) is the visual acuity feature map that gives the visual
acuity of p, O f bn(p) calculates the first order derivative of p in f bn by
using Sobel filter [30] with the kernel size 3×3, O f ba(p) calculates the
first order derivative of p in f ba, and O f bv(p) calculates the first order
derivative of p in f bv. Since the optimized foveated acuity fall-off
model proposed in [26] makes it more suitable for VR HMDs with
wide field-of-view, we use the model to get the foveated visual acuity
feature map f b f . For each pixel p in f b f , the calculation of f b f (p) is
shown in Equation 2. [26] 2.{

f b f (p) = clamp( f f (p, pos f ),0.02,1)
f f (p, pos f ) = 1.1715−2.45 · e(p, pos f )

(2)

where pos f is the gaze position, clamp( f f (p, pos f ),0.02,1) clamps
the value of visual acuity in the range [0.02,1], and e(p, pos f ) calcu-
lates p’s eccentricity based on the position of p and pos f . Equation 3

introduced in [22] connects the luminance of an image with the percep-
tual sensitivity of the HVS, and effectively simulates the threshold of
the perceptual sensitivity under different luminance in a nonlinear way.
Thus, for each pixel p, we calculate the value of p in f bl by Equation
3. [22]

f bl(p) = max( f b f (p),
LP1(p)

LP3(p)+ ε
) (3)

We first use the bicubic upsampling method [7] to upsample the low-
resolution framebuffer f b′ to produce the upsampled low-resolution
framebuffer ˆf b′ of size (w,h). Then we build a 3-level luminance
Laplacian image pyramid LP [3] for ˆf b′. LP1(p) denotes the value of
p at the 1st level of the Laplacian image pyramid, and LP3(p) denotes
the value of p at the 3rd level. ε is used to prevent mathematical
singularities in the regions with low luminance [29], and we set ε to
0.01.

In substep 2, for each pixel p, we seek a 3D Gaussian filter with
maximum standard deviation ρ to merge the two foveated feature maps
f bst and f mlt , and simulate the maximum reduction of the feature
values on each pixel within the maximum imperceptibility threshold
α . For a Gaussian filter, the larger the standard deviation, the more sig-
nificant difference between the filtered feature and the original feature,
and the more reduction of the feature values. More reduction of the
feature values can lead to more aggressive rendering quality reduction.
Therefore, for each pixel, the greater the standard deviation of the 3D
Gaussian filter within the maximum imperceptibility threshold α range,
the sharper the rendering quality degradation that this pixel can tolerate.
Equation 4 describes ρp of the 3D Gaussian filter for the pixel p that
simulates the maximum reduction of the foveated spatiotemporal and
the foveated luminance feature values within α .

maximize ρp,

s.t. max( f bst(p), f bl(p))−Gρp(p, f bst , f bl)≤ α
(4)

where max( f bst(p), f bl(p)) is the larger feature value between f bst(p)
and f bl(p). Gρp(p, f bst , f bl) is the reduced feature value of p con-
volved by the 3D Gaussian filter with the standard deviation ρp based
on f bst and f bl . The larger ρp is, the larger the difference between the
maximum feature value and the reduced feature value, so the reduced
feature value Gρp(p, f bst , f bl) convolved by the 3D Gaussian filter
with ρp can be expressed by Equation 5.

Gρp(p, f bst , f bl) = max( f bst(p), f bl(p))−α (5)

Meanwhile, Gρp(p, f bst , f bl) can also be expressed by Equation 6.

Gρp(p, f bst , f bl) = e
− ( f bst (p)− f bst (p))2+( f bl (p)− f bl (p))2

2πρp2 (6)

where f bst(p) is the Gaussian average value of the kernel of size 5×5
centered at f bst [p], and f bl(p) is the Gaussian average value of the
kernel of size 5×5 centered at f bl [p] [1]. Thus, ρp can be calculated
by Equation 7:

ρp =

√
− ( f bst(p)− f bst(p))

2
+( f bl(p)− f bl(p))

2

2ln(max( f bst(p), f bl(p))−α)
(7)

Then the value of each pixel in the FPSM map is calculated by Equation
8:

map[p] = 1−
ρp−ρmin

p

ρmax
p −ρmin

p
(8)

where ρmin
p is the minimum ρp among all pixels, and ρmax

p is the
maximum ρp among all pixels.

After constructing the FPSM map, we use it to guide lightcuts
generation. For each pixel p in the output framebuffer, we multiply
map[p] by the maximum number of light samples per pixel MAXlspp
to get the number of nodes #L required for this pixel’s lightcuts. Then
we use the criterion introduced in [41] to refine the lightcuts until the
number of the lightcuts’ node becomes #L.



3.2 Multi-resolution Light Samples Selection
We propose a multi-resolution light samples selection method to im-
prove the performance of light samples selection. The motivation of
the multi-resolution light samples selection is to select the light sample
for each node in the lightcuts more efficiently without performing the
light tree traversal for each node.

Multi-resolution light samples selection method accelerates the light
samples selection by selecting light samples directly from the low-
resolution light samples for nodes in the lightcuts without traversing
the light tree. Given the perfect binary light tree tree, FPSM map,
the low-resolution lightcuts LC′, the low-resolution light samples set
LS′, the spatiotemporal-luminance based generated lightcuts LC, the
full resolution of the output framebuffer (w,h), and the low resolution
(w′,h′), the lights samples ls for each pixel p are selected by using the
Algorithm 2.

Algorithm 2: Multi-resolution Light Samples Selection
input : pixel of selecting light samples p, perfect binary

light tree tree, FPSM map, low-resolution lightcuts
LC′, low-resolution light samples set LS′,
spatiotemporal-luminance based generated lightcuts
LC, the full resolution of the output framebuffer
(w,h), low resolution (w′,h′)

output : p’s light samples ls

1 ls← ∅
2 for node ∈ LC[p] do
3 rad ← random(0,1)
4 p′ ← p·( w′

w , h′
h )

5 if rad ≤ (1.0-map[p]) and lrLS(node, LS′[p′]) then
6 l ← nLight(node, LS′[p′], LC[p′])
7 end
8 else
9 l ← hierarchicalIS(tree, node)

10 end
11 ls← ls ∪ l
12 end

Firstly, we initialize the light samples ls for the current pixel p as
empty (line 1). Then we select the light sample for each node node in
the lightcuts LC[p] (lines 2-9).

In the light samples selection loop (line 2), we first generate a random
number rad in the range of 0 to 1 (line 3). Then we calculate p′,
which is the corresponding pixel of p in the low-resolution rendering
framebuffer f b′ (line 4).

If rad is smaller than (1.0-map[p]), and there are low-resolution
light samples (i.e. leaf nodes) in the low-resolution light samples set
LS′[p′] that are the leaf nodes of node(line 5), we select the optimal
low-resolution light sample l in LS′[p′] (line 6). The function lrLS is
used to quickly judge if there are low-resolution light samples in LS′[p′]
that are the leaf nodes of node. Since each node in tree can be quickly
indexed by its offset value lId in the perfect binary light tree tree,
and the nodes are stored consecutively from the smallest to the largest
according to their offset value. Therefore, for each pixel p′, nodes in
the low-resolution lightcuts LC′[p′] are stored according to their offset
values from the smallest to the largest, and light samples in LS′[p′] are
stored according to their offset values from the smallest to the largest.
lrLS calculates the minimum offset lIdmin and the maximum offset
lIdmax of the node’s leaf nodes, and returns true if lIdmin is less than
the minimum offset of the light samples in LS′[p′] or lIdmax is greater
than the maximum offset of the light samples in LS′[p′], otherwise it
will return false. lIdmin and lIdmax are calculated by Equation 9:{

lIdmin = node ·2n−dlog2(node+1)e

lIdmax = lIdmin +2n−dlog2(node+1)e−1
(9)

where n is the number of tree’s level. If there are low-resolution
light samples in LS′[p′] that are the leaf nodes of node, we use the
function nLight to choose the optimal light sample l from LS′[p′] for
node. nLight first calculates the distance dist between node and the

node node′ in LC′[p′] corresponding to the light sample l in LS′[p′] by
Equation 10, and then selects the light sample l that has the smallest
distance dist.

dist = blog2(node′+1)c+ blog2(node+1)c

−2blog2(gcd(2bnode′

2
c,2bnode

2
c)+1)c

(10)

where gcd(x,y) is the function used to find the greatest common divisor
of x and y.

If rad is not smaller than (1.0-map[p]), or there are no low-resolution
light samples in LS′[p′] that are the leaf nodes of node, we use the
hierarchical importance sampling method [41] to traverse tree from
node until it gets the leaf node l (lines 7-8). Finally, we merge l into ls
(line 9).

4 RESULTS AND DISCUSSION

We test our method in five scenes: Study (2110.1k tris., Figure 1, Figure
4 row 1), Room (5103.9k tris., Figure 4 row 2), Cornellbox (110.5k tris.,
row 3), Yard (2575.1k tris., row 4), and Sponza (314.1k tris., row 5).
Study, Room, Cornellbox, and Yard contain diffuse and glossy objects,
all of which are illuminated by mesh light sources. Study contains
58.1k light sources, Room contains 30.4k light sources, Cornellbox
contains 110.5k light sources, and Yard contains 250.6k light sources.
To more fully compare the quality and performance of our method,
we also test our method in the virtual point light (VPL) scene Sponza.
Sponza is a diffuse scene illuminated by a point light. We generate
120.0k VPLs to represent indirect lighting from the point light, and use
different methods to sample these VPLs and compare the illumination
quality and performance of these methods. We use an HTC Cosmos
HMD with a Droolon aGlass to track the head motion and the foveated
point of the user. The HMD is connected to a PC workstation with a
3.8 GHz Intel(R) Core(TM) i7-10700KF CPU, 64 GB of memory, and
an NVIDIA GeForce GTX 3080 Ti graphics card.

4.1 Implementation
To accelerate diffuse rendering for HMD binocular rendering, we shade
the full left-eye view, and then render the right-eye view by sampling
from the completed left-eye view using reprojection [20]. The right-eye
view only has to shade new pixels in the case that no valid sample is
found, rather than recalculating everything [19]. The maximum number
of light samples per pixel MAXlspp and the maximum number of ray
samples per pixel MAXrspp are set to 48 in our implementation.

4.2 Quality
The quality of our results is compared with those of ground truth (GT ),
the stochastic lights (SLe) with the same rendering time as our method,
and the stochastic lights using Stengel’s adaptive foveated sampling
method [26] (SLas) in Figure 4. Since stochastic lightcuts can only
render diffuse illumination effects, we also add the one-bounced path
tracing [13] to each method for rendering glossy reflection effects. The
ground truth images (GT , column 1) are generated by the stochastic
lightcuts with 2048 light samples per pixel (lspp) and the one-bounced
path tracing with 2048 ray samples per pixel (rspp). The number
of lspp and rspp used in the first compared method (SLe, column 3)
makes SLe the same frame rates as our method. lspp and rspp for
each pixel in the other compared method (SLas, column 4) is calculated
by MAXlspp and MAXrspp times the corresponding value in the adap-
tive foveated sampling map (AFSM) generated by Stengel’s adaptive
foveated sampling method. The blue circles on the image of Ours
and SLas indicate foveal regions. We use a large foveal region in ex-
periments, which is the same as the foveal region in [24]. Because a
larger foveal region makes users less aware of the low-quality rendering
effects in the periphery. Even in the current large foveal region, our
method achieves the rendering quality in the foveal region which is
similar to the ground truth. The rendering quality of our method in the
foveal region will be further improved and closer to the ground truth if
a smaller foveal region is given. We also crop and magnify the details
in both the foveal and peripheral regions on the right of each rendering



Table 1: MSE, MSEd and MSEg (×10−2) in the foveal regions (Fove) and peripheral regions (Peri).

Scene
MSE in Fove MSE in Peri MSEd in Fove MSEd in Peri MSEg in Fove MSEg in Peri

Ours SLe SLas Ours SLe SLas Ours SLe SLas Ours SLe SLas Ours SLe SLas Ours SLe SLas

Study 2.01 7.33 2.70 4.65 6.94 5.56 1.91 6.87 2.62 4.51 6.35 5.49 2.44 9.32 3.03 5.23 9.56 5.84
Room 2.41 10.20 2.92 6.28 10.02 7.88 1.73 9.85 2.61 3.92 9.34 4.53 4.33 11.67 6.25 11.26 12.98 11.49

Cornellbox 4.44 8.93 4.61 3.78 5.72 5.13 2.38 4.64 2.84 1.28 4.72 2.13 10.47 21.69 10.64 8.01 15.02 12.74
Yard 3.09 5.84 4.27 4.49 5.36 5.30 2.27 4.83 3.28 3.40 4.03 3.90 7.63 10.84 9.53 8.41 13.04 12.57

Sponza 3.29 10.42 5.69 5.78 8.92 9.34 3.29 10.42 5.69 5.78 8.92 9.34 / / / / / /

image for comparison (up: details in the red rectangle, down: details in
the green rectangle).

Fig. 4: Comparison between GT (column 1), Ours (column 2), SLe
(column 3) and SLas (column 4) in different scenes. The details in
the rectangular regions are magnified and placed on the right of each
image.

Table 2: spp of our method, SLe and SLas in different regions.

Scene
spp spp in Fove spp in Peri

Ours SLe SLas Ours SLe SLas Ours SLe SLas

Study 5.5 5.0 6.3 22.4 5.0 20.1 3.1 5.0 4.4
Room 10.7 10.0 15.9 27.2 10.0 30.3 8.2 10.0 13.9

Cornellbox 8.4 8.0 11.8 28.0 8.0 27.9 6.0 8.0 9.3
Yard 5.5 5.0 8.2 22.6 5.0 22.7 4.4 5.0 6.1

Sponza 7.4 7.0 9.3 23.3 7.0 22.6 5.2 7.0 7.4

Our results are closer to the results of the ground truth than those
of SLe and SLas. Some artifacts are shown in the rectangle regions
rendered by SLe and SLas. In row 1, there is wrong red shading at the
front legs of the toy cat in the red rectangle region in the result of SLe,
and the shading of the toy dog’s head should be more reddish rather
than greenish in the green rectangle region in the result of SLe and SLas.
In row 2, the shadow under the fruit basket is not smooth in the red
rectangle region in the result of SLe, and the color shading on the table
is noised in the green rectangle region in the result of SLe and SLas. In
row 3, the glossy effects on the blue bunny’s head are coarse in the red
rectangle region in the result of SLe and SLas, and the color shading on
the ceiling is noised in the green rectangle region in the result of SLe
and SLas. In row 4, there are noisy points on the jar in the red rectangle
region in the result of SLe, and there are noisy points on the inner side
of goblets in the green rectangle region in the result of SLe and SLas.
In row 5, the color bleeding on the floor reflected by the green curtain
is not smooth in the red rectangle region in the result of SLe, and there
are obvious green sparks on the floor near the feet of the dragon in the
green rectangle region in the result of SLe and SLas.

To distinguish between errors caused by foveated lightcuts and errors
caused by foveated path tracing, we quantify the quality with three
metrics: MSE for all pixels of the rendering results compared with the

Fig. 5: Visualization of MSE of our method, SLe and SLas in different
scenes.
ground truth, MSEd for the pixels of the diffuse parts in the rendering
results compared with the ground truth, MSEg for the pixels of the
glossy parts in the rendering results compared with the ground truth.
We measure MSE, MSEd and MSEg in the foveal and peripheral regions
separately.

Table 1 shows the comparison of MSE, MSEd , and MSEg of our
method, SLe and SLas for the images in Figure 4. Benefiting from
our spatiotemporal-luminance based lightcuts generation method, our
method achieves smaller MSE, MSEd , and MSEg in both the fovea
and periphery than those of SLe and SLas. Compared with SLe, (MSE,
MSEd , MSEg) of our method is (1.9-4.2, 1.9-5.7, 1.4-3.8)× smaller in
fovea, and (1.2-1.6, 1.2-3.7, 1.2-1.9)× smaller in periphery. Compared
with SLas, (MSE, MSEd , MSEg) of our method is (1.1-1.7, 1.2-1.7,
1.1-1.4)× smaller in fovea, and (1.2-1.4, 1.1-1.7, 1.0-1.6)× smaller in
periphery. This is because the FPSM constructed in our method is
different from the AFSM constructed in SLas, and the results show that
the FPSM prefers to guide high-quality rendering for the regions with
large (MSE, MSEd , MSEg).

Table 2 shows the comparison of the average samples per pixel spp
of our method, SLe and SLas in different regions for the images in
Figure 4. Compared with SLe, our method achieves larger spp for the
whole region of the current view in all the five scenes, thanks to our
multi-resolution light samples selection method. spp of our method is
2.7-4.5× higher than that of SLe in the foveal region. In the peripheral
region, our method achieves higher rendering quality with lower spp
than that of SLe. This is because spp of our method is not uniform in
the peripheral region, and it distributes more spp on the surface of high
perception-sensitive objects in the peripheral region. Compared with
SLas, our method achieves higher rendering quality with lower spp in
the peripheral region, and spp of our method is 1.4-1.7× smaller than
that of SLas.

The images of Figure 5 visualize MSE for the images in Figure 4.
The whiter pixels represent the larger error. The error visualization
shows that MSE of our method is always smaller than that of SLe in
both the fovea and periphery. MSE of our method is close to that
of SLas in the foveal region, but is smaller than that of SLas in the
peripheral region although spp of our method is smaller than that of
SLas.

The images of Figure 6 visualize the FPSM of our method (row 1)
and the AFSM of SLas (row 2) for the images in Figure 4. As can be
seen from Figure 6, the FPSM is different from the AFSM in SLas. The
overall brightness of the FPSM is lower than that of the AFSM. AFSM
is more inclined to the edge regions of objects, while the distribution of



Fig. 6: Visualization of the FPSM (row 1) and the AFSM (row 2) in
different scenes.

Fig. 7: Rendering results and the FPSM visualization of our method
with different values of the maximum imperceptibility threshold α in
Cornellbox and Sponza.
the FPSM is more uniform and concentrates on the entire surface of
obvious objects.

The maximum imperceptibility threshold α of our method affects
the image quality. Figure 7 shows the rendering results of our method
in Cornellbox and Sponza with various α . Images in row 1 and row
3 show the rendering result, and images in row 2 and row 4 show the
visualization of the FPSM when α is gradually increased from the
left to the right: 0.025, 0.05, 0.1, 0.2, 0.4. In the rendering results of
Cornellbox and Sponza, there is no obvious visual difference among
the images in the foveal region, while the noise in the peripheral re-
gion increases when α increases. When α increases from 0.025 to
0.1, the rendering quality of the peripheral region does not decrease
significantly, but when α continues to increase, the rendering quality of
the peripheral region drops sharply. In the visualization of the FPSM,
the brightness of the map in the peripheral region decreases when α

increases. MSE and MSEd in the foveal and peripheral regions of these
two scenes are shown in Figure 8.

Fig. 8: MSE (a) and MSEd (b) in Cornellbox and Sponza as a function
of the maximum imperceptibility threshold α .
4.3 Performance
Table 3 shows the frame rendering time of our method and stochastic
lightcuts with different rendering qualities. Columns 2 and 3 show the
time cost of our method with (Ours) and without the multi-resolution
light samples selection (Ours′). Our method with the multi-resolution
light samples selection method gets 1.3-1.4× speedup. Compared
with SLas (column 4), our method achieves 1.3-2.0× speedup, and
our method achieves higher rendering quality in both the foveal and

Table 3: Performance (ms) of our method compared with stochastic
lightcuts.

Scene Ours Ours′ SLas SL f SLp
Study 9.1 12.0 15.1 25.9 17.8
Room 13.3 17.8 26.5 52.5 32.3

Cornellbox 12.6 16.6 16.9 33.3 27.4
Yard 18.9 24.6 28.2 46.5 29.4

Sponza 13.2 18.9 23.7 49.6 29.1
peripheral regions. Compared with the stochastic lightcuts method
SL f (column 5) that has the comparable rendering quality in the foveal
region as our method, our method achieves 2.5-3.9× speedup. Com-
pared with the stochastic lightcuts method SLp (column 6) that has the
comparable rendering quality in the peripheral region as our method,
our method achieves 1.6-2.4× speedup.

Figure 9 shows the time cost on each step using our method (a)
and SL f (b) for rendering each frame of Study. Our method has five
steps: 1) light tree construction, 2) spatiotemporal-luminance based
lightcuts generation, 3) multi-resolution light samples selection, 4) il-
lumination shading using light samples, 5) foveated path tracing for
glossy effects. SL f also has five steps: 1) light tree construction, 2)
lightcuts generation, 3) light samples selection, 4) illumination shading
using light samples, 5) one-bounced path tracing for glossy effects.
Light tree construction of our method is almost the same as that of
SL f . Our spatiotemporal-luminance based lightcuts generation only
achieves 1.1× speedup compared with lightcuts generation of SL f .
This is because we need to construct the FPSM in spatiotemporal-
luminance based lightcuts generation, which incurs additional time
overhead. Benefiting from our spatiotemporal-luminance based light-
cuts generation, illumination shading using light samples and foveated
path tracing for glossy effects of our method achieve 4.0× speedup
compared with those of SL f . This is because lightcuts generated by
spatiotemporal-luminance based lightcuts generation have fewer nodes
than those generated by lightcuts generation of SL f , and using light-
cuts with fewer nodes can speed up illumination shading using light
samples. And the FPSM constructed in spatiotemporal-luminance
based lightcuts generation can guide the allocation of rspp in foveated
path tracing for glossy effects, allocating less rspp to low perception-
sensitive regions to speed up foveated path tracing. Multi-resolution
light samples selection of our method is 4.4× faster than light samples
selection of SL f .

Fig. 9: Time cost in each step of our method (a) compared with that of
SL f (b) in Study.

Table 4 shows the performance in five scenes with the different max-
imum imperceptibility threshold α . When α increases from 0.025 to
0.1, the time cost of each frame is shortened by 13.6-30.2ms, but when
α goes from 0.1 to 0.4, the time cost of each frame is shortened by
only 4.2-8.9ms. This is because with the increase of α , the time cost
of light tree construction and spatiotemporal-luminance based light-
cuts generation does not decrease significantly, requiring a constant
time of about 2.5ms. Only multi-resolution light samples selection,
illumination shading using light sample, and foveated path tracing for
glossy effect decrease linearly with the increase of α , but as α increases
from 0.1 to 0.4, this makes the constant time consumption of light tree
construction and spatiotemporal-luminance based lightcuts generation
become one of the bottlenecks.
5 USER STUDY
We design the within-subject study [9] to evaluate the perceived render-
ing quality between our method and stochastic lightcuts.

Conditions. We use our method as an experimental condition
(EC), and EC uses our method to render five scenes {Study, Room,
Cornellbox, Yard, Sponza}. The first control condition (CC1) uses
GT to render five scenes. The second control condition (CC2) uses



Table 4: Performance (ms) of our method with different α in different
scenes.

Scene The Maximum Imperceptibility Threshold α

0.025 0.05 0.1 0.2 0.4
Study 22.7 16.4 9.1 6.5 4.9
Room 37.3 25.3 13.3 9.0 6.4

Cornellbox 31.5 25.1 12.6 9.1 6.5
Yard 49.1 36.6 18.9 14.0 10.0

Sponza 36.9 25.3 13.2 9.5 7.0

SLe to render five scenes. The third control condition (CC3) uses SLas
to render five scenes. The forth control condition (CC4) uses SL f to
render five scenes.

Task 1. In Task 1, we test different scenes sequentially from Study to
Sponza. For each scene, we first show the animation sequence rendered
by CC1, then tell the participant that this is the ground truth, and then
present the participant with the short animated sequences that rendered
by EC, CC1, CC2, CC3 and CC4 in randomized order. Each short
animated sequence is 8.0s long and separated by a short interval (0.5s)
of black, which is the same as Guenter et al. [12]. In the process of the
task, participants are asked to press one of two buttons (yes or no) to
answer the question ‘is this sequence the ground truth ?’ after being
presented each animated sequence. After this, the next sequence comes
in.

Task 2. In Task 2, each participant explores five scenes rendered by
EC, CC2, CC3 and CC4 in randomized order. Each exploration is 16.0s
long and separated by a short interval (1.0s) of black. In the process of
the task, participants are asked to press one of two buttons (acceptable
or unacceptable) to answer the question ‘is the quality of this sequence
acceptable?’ after each exploration. After this, the next exploration
begins.

Participants. We recruit 32 participants in this user study, including
20 males and 12 females, who are between 18 and 52 years old. Each
participant completes 50 trials in Task 1, and 40 trials in Task 2. Each
item in all conditions is presented twice in Task 1 and 2. Since CC1 can
not enable the interactive frame rates, it is not added to the comparison
of Task 2. In each task, we record the participant’s positive answer with
a score of 1 and negative answer with a score of 0, i.e., 1 for ’yes’ to
the question of Task 1 and ’acceptable’ to the question of Task 2.
Table 5: The scores of Task 1 for the perceived rendering quality of
each item in EC, CC1, CC2, CC3 and CC4.

con. avg. ± std. dev. p value Cohen’s d effect size
EC 0.79 ± 0.40 / / /

CC1 0.96± 0.19 <0.001 0.53 medium
CC2 0.17 ± 0.37 <0.001 1.62 very large
CC3 0.38 ± 0.49 <0.001 0.92 large
CC4 0.85 ± 0.36 0.063 0.15 very small

Results and Discussion. Table 5 shows the scores of Task 1 for EC,
CC1, CC2, CC3 and CC4 in all scenes. We calculate the average scores
(avg.) of all conditions, and use the p value [36] and Cohen’s d [4] to
estimate the difference between EC and other conditions. Avg. of EC
and CC4 are closer to CC1 than those of CC2 and CC3. And avg. of
EC is slightly lower than that of CC4. This is because CC4 has the high-
quality illumination effects in both the foveal and peripheral regions,
while the rendering quality of EC in some low perception-sensitive
parts in the periphery is low. But the p value and Cohen’s d both show
that the perceived rendering quality of EC is similar to CC4, the effect
size of Cohen’s d is very small. Avg. of EC is significantly higher than
that of CC2 and CC3. This is because the rendering quality of CC2 is
low, and some high perception-sensitive parts in the periphery of CC3
can not be rendered with high quality. The p value and Cohen’s d both
show that the perceived rendering quality of EC is significant different
from that of CC2 and CC3, effect size of Cohen’s d in CC2 and CC3 is
very large and large.

Table 6 shows the scores of Task 2 for EC, CC2, CC3 and CC4 in
all scenes. Avg. of EC is significant higher than that of CC2, CC3
and CC4. Avg. of CC4 is not in line with the trend of Task 1. This is
because the frame rates of CC4 can not support participants to explore
virtual scenes immersively, although the rendering quality of CC4 is

high enough. The perceived rendering quality of EC is significant
different from that of CC2, CC3 and CC4 in the results of p value and
Cohen’s d, effect size of Cohen’s d in CC2, CC3 and CC4 is very large,
large and large separately.
Table 6: The scores of Task 2 for the perceived rendering quality of
each item in EC, CC2, CC3 and CC4.

con. avg. ± std. dev. p value Cohen’s d effect size
EC 0.86 ± 0.35 / / /

CC2 0.18 ± 0.39 <0.001 1.83 very large
CC3 0.50 ± 0.50 <0.001 0.80 large
CC4 0.47 ± 0.50 <0.001 0.90 large

6 CONCLUSION, LIMITATIONS AND FUTURE WORK
Foveated rendering is a rendering framework for improving the render-
ing performance, which is particularly useful for VR HMD rendering.
Many researchers adapted the existing rendering methods into the
framework of foveated rendering, such as rasterization based foveated
rendering [17], foveated ray tracing [37], and foveated instant radios-
ity [34], etc. We have proposed a foveated stochastic lightcuts method
to adapt stochastic lightcuts into the framework of foveated rendering,
so as to better support the many-lights illumination rendering in VR
HMDs. Compared with the previous work, the novelty of our method
is to provide an efficient dynamic many-lights rendering algorithm in
VR HMDs, which uses the spatiotemporal and luminance sensitivity of
the HVS to guide the lightcuts generation, and accelerates light sam-
ples selection for further improving the rendering performance. The
foveated stochastic lightcuts renders high-quality perceived many-lights
illumination effects of the virtual scenes for the HVS at high frame
rates. The perceived quality of the foveated stochastic lightcuts has
a high visual similarity with the results of the ground truth rendered
by using the stochastic lightcuts with 2048 lspp and the one-bounced
path tracing with 2048 rspp. The foveated stochastic lightcuts pro-
vides a new foveated rendering method for VR HMDs, which supports
full-dynamic scenes containing over 250k dynamic light sources and
diffuse/specular/glossy dynamic objects with the frame rates up to
110fps. Compared with the state-of-the-art stochastic lightcuts method
with the comparable rendering quality in the fovea, our method achieves
2.5-3.9× speedup.

The virtual scene rendered by our method contains not only diffuse
objects, but also specular and glossy objects. This is because we add a
foveated path tracing step according to the FPSM after the shading of
the lightcuts method. One limitation is that our method can not be ex-
tended to render transparent and translucent objects. The bidirectional
lightcuts (BLC) [33] extends the lightcuts method to support the trans-
parent material, but the complex bounding function of nodes in the light
tree is time-consuming. So one possible future work is to accelerate
BLC and to adapt it into the framework of foveated rendering. Another
limitation of our method is that the efficiency of our multi-resolution
light samples selection method may drop when there are a large number
of light sources with complex shapes in a small space. Because in
this case, when generating the high-resolution rendering result, the
light samples for each pixel are quite different, and the light samples
stored in the step of the low-resolution rendering cannot provide enough
reusable light samples for high-resolution rendering. Therefore, the
future work is to perform adaptive multi-resolution rendering according
to the features of the scenes, to generate more low-resolution lighting
samples for regions that require a large number of lighting samples, and
to improve the reuse rate of low-resolution lighting samples, thereby
improving rendering performance. In addition, using deep learning
models to construct the map to guide the lightcuts generation is an inter-
esting idea for accelerating the lightcuts method. However, the visual
latency tolerance threshold of HVS is around 13ms, and complex deep
learning models may be difficult to meet the performance requirements
of VR applications. In future work, we consider creating an efficient
generative deep learning model to construct the map for guiding the
lightcuts generation.
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