Vis Comput (2018) 34:1415-1426
https://doi.org/10.1007/s00371-017-1449-7

@ CrossMark

ORIGINAL ARTICLE

Intermediate shadow maps for interactive many-light rendering

Lili Wang! - Wenhao Zhang! - Nian Li! - Boning Zhang! - Voicu Popescu

Published online: 8 November 2017
© Springer-Verlag GmbH Germany 2017

Abstract We present an efficient method for computing
shadows for many light sources (e.g., 1024). Our work is
based on the observation that conventional shadow mapping
becomes redundant as the number of lights increases. First,
we sample the scene with a constant number of depth images
(e.g., 10), which we call intermediate shadow maps. Then
the shadow map for each light is approximated by rendering
triangles reconstructed from the intermediate shadow maps.
The cost of rendering these triangles is much smaller than
rendering the original geometry of a complex scene. The
algorithm supports fully dynamic scenes. Our results show
that our method can produce soft shadows comparable to
those obtained by conventional shadow mapping for each
light source or by ray tracing, but at a higher frame rate.

Keywords Many lights - Visibility - Shadow mapping

1 Introduction

Improving the quality of computer rendered imagery
demands not only increasing the geometric detail of the
scene, but also increasing the detail with which scene light-
ing is modeled. A frequently used light modeling primitive is

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s00371-017-1449-7) contains
supplementary material, which is available to authorized users.

< Lili Wang
wanglily @buaa.edu.cn

State Key Laboratory of Virtual Reality Technology and
Systems, School of Computer Science and Engineering,
Beihang University, Beijing, China

2 Purdue University, West Lafayette, IN, USA

2

the point light source, which is simple and versatile, support-
ing the modeling of complex area light sources and indirect
illumination. However, complex lighting requires a large
number of point light sources. Rendering complex scenes
with many point light sources at interactive rates remains an
open research problem. The core challenge is to determine
visibility between the scene geometry and the light sources.
When the scene consists of millions triangles and when light-
ing is modeled with hundreds or even thousands of point light
sources, determining visibility can be very time-consuming,
precluding rendering at interactive rates. The conventional
approach for rendering shadows in interactive graphics appli-
cations is shadow mapping, which does not scale with scene
complexity and with the number of lights, as it requires ren-
dering the scene once for each light.

In this paper, we present an efficient method for com-
puting shadows for many point light sources (e.g., 1024).
Our method is based on the observation that conventional
shadow mapping becomes redundant as the number of lights
increases. Given a shadow map SM; rendered for a light
source L;, SM; contains a significant part of the visibil-
ity information needed to compute shadows for a different
light L ;. Given a set of k intermediate shadow maps, the set
contains almost all of the visibility information needed to
compute shadows for any number of additional lights. Ren-
dering shadow maps for the additional lights is redundant.
Instead, our method approximates the shadow map of a light
from the set of intermediate shadow maps.

Our method has two steps. First, we sample the scene
with a constant number of depth images (e.g., 10), which
we call intermediate shadow maps (INSMs). Each INSM
is then triangulated by connecting four adjacent samples
with two triangles. Finally, the shadow map for each light
L is approximated by rendering the triangles of all INSMs
from the viewpoint L. Since the number of INSMs is con-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-017-1449-7&domain=pdf
https://doi.org/10.1007/s00371-017-1449-7

1416

L. Wang et al.

Fig. 1 Scenes with 1024 lights rendered with our method (row 1) and
with ray tracing (row 2). Compared to ray tracing, the average per pixel
intensity errors for our method are 0.1, 0.7 and 1.1%, and the speedups

stant, the cost of rendering the triangles reconstructed from
them is also constant, and, for complex scenes, this cost
is significantly smaller than rendering the entire scene.
We tested our approach on several complex scenes where
we obtained high-quality shadows and good performance
(Fig. 1). We also refer the reader to the accompanying
video.

2 Previous work

The classical methods for shadow computation are shadow
mapping, shadow volumes and ray tracing. However, these
methods are slow for a large number of lights. In order to
accelerate visibility computation in the context of shadow
rendering, researchers pursued two kinds of approximations:
scene geometry approximation, which implies replacing the
original scene geometry with a lower cost representation, and
lighting approximation, which implies reducing the number
of lights by clustering. In addition to our overview of prior
work below, we also refer the reader to a recent survey of
many-light techniques [5].

@ Springer

are 12x, 25x and 17x. Compared to conventional shadow mapping,
our method brings speedups of 5x, 18x and 10x

2.1 Ray tracing-based methods

Approximating the scene geometry has been pursued in the
context of ray tracing. One method is micro-rendering [19],
which uses a point tree hierarchy to approximate the geom-
etry of objects in the scenes. The exact visibility of the leaf
nodes is determined by ray casting after the cut of tree is com-
puted. Another method is based on incremental voxel-space
visibility computations [13], which uses a screen-space vox-
elization to discretize the scene geometry, and introduces an
efficient incremental query to determine the visibility from
output samples to light sources.

Several ray tracing-based methods focus on simplifying
the lights, which brings more time performance advantage for
both illumination and visibility, but at the cost of a quality
decrease. One method groups lights using an octree [17]
and resorts to volumetric visibility approximation. Another
method partitions the geometry of the scene into zones and
clusters the lights into sets of similar lights per zone, which
results in an unstructured light cloud [12]. Lightcut [23] is a
popular scalable solution to the many-light problem. A binary
light tree is built by clustering the original lights, and cuts
through the tree are selected for output samples. The method

Intermediate shadow maps for interactive many-light rendering

1417

uses the trivial upper bound of one for the visibility term (i.e.,
all lights are potentially visible). Many researchers improved
visibility computation accuracy based on the original lightcut
method [3,4,24].

There are some ray tracing-based method that approxi-
mate both lights and scene geometry. Such as VisibilityClus-
ters in [26]. The method constructs VisibilityClusters with
high visibility coherence and estimates average visibility by
exploiting the sparse structure of the matrix and shooting
only few shadow rays between clusters.

2.2 Shadow mapping-based methods

Compared to ray tracing, shadow mapping-based methods
are faster, but still not fast enough for interactive performance
in the context of a large number of lights and of a complex
scene. Shadow mapping acceleration was pursued by scene
geometry approximation.

One straight forward method available to practitioners is
to simplify the scene geometry with off-the shelf LOD tools
such as Simplygon [2] or 3Ds Max [1]. Compared to geom-
etry simplification, our method is robust and it works for any
scene, whereas geometry simplification is complex and it
requires tuning scene-specific parameter values. Our method
does not preprocess geometry, so it is suitable to geome-
try that becomes available in real time, such as geometry
acquired with real-time depth cameras. Moreover, simplified
geometry will cast acceptable shadows for area light sources
that generate soft shadows, but any hard shadow will reveal
the coarseness of the underlying geometric model.

If geometry simplification is to take into account the cur-
rent positions of the lights in order to avoid oversimplifying
blockers that cast hard shadows, it can only do so by running
for every frame, as the lights are dynamic and the hard-
ness of a shadow cast by one light changes from frame to
frame. Furthermore, geometry simplification typically takes
into account a single viewpoint, i.e., the eye of the camera that
renders the output image. It is difficult to meet the constraints
of thousands of viewpoints, each creating a silhouette. For
example, the ManyLoDs method [10] uses a bounding vol-
ume hierarchy (BVH) to approximate the scene geometry
and to compute LoDs efficiently in parallel by balancing the
workload within and among the LoDs. For dynamic scenes,
the BVH has to be updated for each frame based on scene
graph cuts defined by the thousands of lights. In order to com-
plete these steps in real time, the method has to find some
high-level cuts, which correspond to a coarse approximation
of scene geometry, which might acceptable for faint shadows
but not for shadows with higher definition.

Ritschel et al. [21] propose coherent shadow maps (CSM).
The precomputed and compressed depth maps allow visibil-
ity tests between moving objects and a high number of lights
outside their convex hulls using simple shadow mapping,

but the method is unsuitable for virtual point light sources
placed on an objects surface, as needed for indirect lighting
in global illumination. In order to solve this problem, coher-
ent surface shadow map (CSSM) was proposed, which is a
more accurate technique that approximates visibility at scene
points using local cube maps [22]. CSM and CSSM precom-
pute thousands of shadow maps for each scene object, which
is prohibitively slow in the context of fully dynamic scenes,
where geometry becomes available in real time, or where
objects deform, which makes their shadow maps obsolete.

The virtual area lights (VALs) method [7] computes
directly the soft shadows cast by the smaller number of VALs
using convolution soft shadow mapping with parabolic pro-
jection, which has a smaller overall cost than computing hard
shadows for all the point light sources. The VAL method is
fast, and it can handle fully dynamic scenes, but the shadows
are approximate. VAL relies on a last “shadow blurring” step
where high-frequency artifacts are filtered out. Our method
renders the intermediate shadow maps in real time without
fudging the shadows in a postprocess.

Imperfect shadow map (ISM) [20] is a more gen-
eral method for many-light visibility determination in fully
dynamic scenes. A low-resolution shadow map is rendered
for each light from a coarse point-based approximation of
scene geometry by splatting followed by pull-push recon-
struction. ISM is a popular method for interactive rendering
with many lights, so we compare our method to ISM in detail
in the Results section. The virtual shadow maps technique
[15,16] subdivides view volume into clusters which contain
visible geometry and then creates a list of lights influencing
each cluster of scene geometry. It also proposes an adaptive
method for selecting the proper resolution of shadow maps,
which are used to determine visibility. For the scenes with
hundreds of light sources, this method achieves high-quality
shadows in real time and within a bounded memory footprint.

In matrix row—column sampling [9], the columns of a
matrix represent all output pixel samples lit by an individ-
ual light, and the rows represent an individual sample lit
by all lights. A set of representative rows and columns of
the matrix are computed first using conventional shadow
mapping. A row is computed by rendering the scene from
the viewpoint of the sample of the row, and a column is
computed by rendering the scene from the light of the col-
umn. Then the other matrix elements are approximated by
interpolation. The visibility clustering method [6] clusters
lights, renders a representative shadow map to approximate
the visibility in each cluster and combines the approximate
visibility with accurate per light shading. Visibility clustering
requires rendering fewer shadow maps than standard matrix
row—column sampling. Matrix row—column sampling was
extended to rendering massive scenes with out-of-core geom-
etry and complex lighting [25]. Another extension uses a
new matrix sampling-and-recovery scheme to gather illumi-

@ Springer

1418

L. Wang et al.

nations efficiently by only sampling visibility for a small
number of representative lights and surface points [11]. The
clustering step on which all of these methods rely is too time-
consuming for interactive rendering, and these methods are
reserved for providing previews in animation systems, at the
cost of several to hundreds of seconds per frame.

Our method falls into the category of shadow mapping-
based methods. Like in visibility clustering, our method
computes a set of intermediate shadow maps, but then the
intermediate shadow maps are reprojected to the viewpoint
of each light source, which results in a higher-quality approx-
imation of visibility than simply using the representative
shadow map for all the lights in the cluster.

3 Intermediate shadow maps

Our method avoids the redundancy of rendering hundreds
of shadow maps. A small number of intermediate shadow
maps are used to approximate the shadow map of each of the
many lights. Using the visibility information contained in an
intermediate shadow map INSM ; for a light L; can be done
in many ways.

One approach is to leverage epipolar geometry. Given an
outputimage sample S, , defined by a color value and a depth
value which allows unprojecting the sample to a 3D point in
scene space, the intersection between the lightray L; S, and
INSM; can be computed by projecting L; S, onto INSM ;
and tracing the projection in search of an intersection. This
approach was introduced in inverse 3D image warping [27]
and then later used in relief texture mapping [14] and in spec-
ular reflection rendering [8]. The advantage is reducing the
cost of intersecting a depth image with a ray from 2D to 1D.

However, unlike in the case of inverse 3D image warping,
relief texture mapping and specular reflections where there is
a single ray per output image pixel, in our context there are n
rays per pixel, where n is the number of lights, which could be
in the hundreds or even the thousands. Fortunately, the large
set of rays that arises in the context of many-light rendering
is coherent, as the light rays can be grouped in concurrent
bundles, with one bundle per light. This enables a second,
more efficient approach for using the visibility information of
the intermediate shadow map INSM ; for approximating the
shadow map of L;. The second approach, which we adopt,
is to transform INSM; into a triangle mesh and to render
the triangle mesh from L;. This approach leverages the GPU
strength of rendering triangles by projection followed by ras-
terization.

3.1 Algorithm overview

Algorithm 1 outlines the main steps of our approach.

@ Springer

Algorithm 1 Many-Light Rendering with Intermediate
Shadow Maps

Input: scene S with N triangles and n light sources L;, k reference
viewpoints V; and output view V.
Output: Image / that shows S rendered from V with shadows cast by
Li.
1: for j=1tokdo
2: INSM; =Render(S, V;)
T M; = Triangulate(INSM)
: I =Render(S, V)
:fori=1tondo
SM; =0
for j=1tok do
SM;=Render(TM;, L;)
Shadow mapping / from L; using SM;
10: return /

Y ReIAINR W

In steps 1-2 the intermediate shadow maps are rendered
conventionally from the reference viewpoints V; that are
designed to sample the scene S uniformly and comprehen-
sively. We place the intermediate shadow map reference
viewpoints at the midpoints of the eight edges and the centers
of the left and right planes in the axis aligned bounding box
of S (Fig. 2).

Then each intermediate shadow map INSM ; is converted
to a triangle mesh 7M; by defining two triangles for each
neighborhood of 2 x 2 INSM; samples. No triangles are
generated across depth discontinuities, as such triangles will
incorrectly connect the foreground surface to the background
surface, casting incorrect shadows. Depth discontinuities are
computed by thresholding the second-order difference in the
depth map. The second-order difference is surface orientation
independent, i.e., it is exactly O for any plane, no matter its
orientation. Step 3 is described in detail in Sect. 3.2.

Step 4 renders the scene without shadows to image I,
which defines the samples for which shadows have to be
computed, in deferred shading fashion. Steps 5-9 compute
the number of visible lights for each pixel in /. For each light
L;, an approximate cube shadow map SM; is constructed first
by rendering all intermediate shadow map triangle meshes
TM; from L; (steps 6-8). Then SM; is used to compute vis-
ibility from L;, for every pixel in /.

3.2 Intermediate shadow map triangulation

We triangulate the intermediate shadow maps on the GPU,
by processing neighborhoods of 2 x 2 intermediate shadow
maps samples in parallel, as described in Algorithm 2.
Sample (u, v) is the top left sample of the 2 x 2 neighbor-
hood. The four samples are connected with two triangles. A
triangle is kept if its vertices pass the connectivity test. The
triangle connectivity test IsConnected (a, b, ¢) checks con-
nectivity for each of the three triangle edges (a, b), (b, ¢), and
(c, a) by thresholding a second-order depth difference along

Intermediate shadow maps for interactive many-light rendering 1419
Reconstructed
triangle list
: A
1
1
i A
i
1
v A
i |
1 1
I
: : A
i i
I 4
! ! A
1 1
1 1
L -
1 1
! t A
Ly e |
!] A
Fig. 2 Reference viewpoint placement for the intermediate shadow . \)) A
Discarded triangle Discarded triangle

maps. There are 10 reference viewpoints (dots) from where 14 interme-
diate shadow maps (arrows) are rendered

Algorithm 2 Intermediate Shadow Map Triangulation
Input: INSM;

Output: triangle mesh 7'M obtained from /N SM;

1: for each INSM; sample (u, v) do

2. if IsConnected((u, v), (u, v+ 1), (u + 1, v + 1)) then

3 TM;+=[(u,v), w,v+1),(u+1,v+1)]

4: if IsConnected((u + 1, v + 1), (u + 1, v), (u, v)) then
5: TMj+=[(u+1,v+1), u+1,0), (u,v)]

6: return T M;

the edge [18]. For example, edge ((«, v), (u, v+ 1)) passes
the connectivity test if both of the two conditions below are
met, where z(u, v) is the depth value of sample (u, v), and €
is a threshold that depends on the scene.

lzu, v — 1) +z(u, v+ 1) = 2z(u, v)| < ¢
lz(u, v) + z(u,v+2) —2z(u,v+1)| < ¢

This second-order depth difference is exactly zero for a
planar surface, regardless of the orientation of the plane. In
other words, our connectivity computation will never discon-
nect a planar surface in the scene. Figure 3 shows triangles
that are kept and triangles that are discarded, including invalid
triangles that involve null (i.e., background) samples.

4 Results and discussion

In this section, we discuss the quality of the shadows rendered
by our method, we report frame rate measurements, and we
discuss limitations.

We tested our algorithm with several scenes: Dragon,
Church, Carousel, City, Planes, Grass and Sponza. Table 1
gives the number of triangles for each scene, as well as the
number of triangles obtained after triangulating the interme-
diate shadow maps. All performance measurements reported

Fig. 3 Triangle mesh reconstruction from intermediate shadow maps.
Four neighboring samples in the intermediate map are connected with
two triangles. Triangle 7] and #, are added to the mesh. Triangle #3 and 4
are discarded since they span a depth discontinuity or involve an invalid
background sample

in this paper were recorded on a 3.8 GHz Intel(R) Core(TM)
17-2600K CPU PC with 12 GB of RAM and an NVIDIA
GeForce GTX 660 graphics card. We use NVIDIA’s Optix
ray tracer.

4.1 Quality

We compare the shadows rendered with our method to shad-
ows rendered using imperfect shadow maps (ISM) and to
ground truth shadows rendered with ray tracing. The error
metric used is the average shadow intensity error per valid
image pixel.

Avg . pixel error = (Z (IC(u, v) — Cr(u, U)|)) /n/255

1

n is the number of non-background pixels, and C (u, v) and
C,(u, v) are the shadow intensity values at a pixel with our
method and with ray tracing. We normalize the error by
dividing by the maximum shadow intensity value 255 and
we provide the error as a percentage. Although it is a relaxed
error measure for visibility computation, as positive and neg-
ative errors from different lights may cancel out at a given
pixel, the average intensity error is directly related to the
quality of the output image.

Our method renders high-quality shadows, comparable to
shadows rendered by ray tracing, for complex scenes with
1024 lights (see Figs. 1, 4, as well as the accompanying
video). In all our experiments, the default resolution of the
intermediate shadow maps is 128 x 128, the default resolu-

@ Springer

1420 L. Wang et al.

Table.lv Number of trlz.ingles n Scene Dragon Church Carousel City Planes Grass Sponza

the original scenes and in the

INSMs Tris [k] 871 1868 1336 117 1000 1198 1063
INSM Tris [k] 150 121 159 167 65 71 263

tion of the shadow maps computed for each lightis 512 x 512,
the default number of intermediate shadow maps is 10, and
the default number of light sources is 1024. The output image
resolution is 512 x 512. The third and the fifth columns of
Fig. 4 visualize the error for the six images shown in Figs. 1
and 4.

Our method typically underestimates blockers, by only
considering what was captured in the intermediate shadow
maps and by eroding surface edges a half-pixel during recon-
struction, which results in light leaking. Consequently, the
small approximation errors in our images are typically due
to pixels that are brighter than they should be. The occasional
“too dark” approximation errors are due to incorrect depth
discontinuity detection which generates superfluous blocker
surfaces. Consider the case of a foreground surface that is
incorrectly connected to a background surface due to failing
to detect the depth discontinuity between them. The connec-
tive surface does not exist in reality, and it casts a shadow
that makes the output pixel too dark. The Planes and Grass
scenes are the most challenging scenes for our method due
to the high depth complexity, which is challenging for the
small number of intermediate shadow maps we use, and the
minute detail, which is challenging for the reconstruction
of the blocker surfaces from the sample base representation
brought by the intermediate shadow maps. Even for these
challenging scenes, the approximation errors introduced by
our method are small.

Our intermediate shadow map triangulation algorithm
always connects the top right sample to the bottom left sam-
ple. Better results could be obtained by choosing the best way
of triangulating a group of neighboring four samples, based
on actual scene geometry. For example, when the geome-
try is concave, choosing the wrong diagonal could provide a
convex approximation of geometry, and vice versa. We ran
an experiment where the triangulation used selectively the
top right/bottom left or the top left/bottom right diagonals
based on the best approximation of depth at the center of the
square defined by the four samples. The error improved from
0.12 to 0.11% for the Dragon scene, but this small improve-
ment came at a substantial cost in triangulation time, which
went up from 65 to 155ms per frame. For most scenes and
applications, such an adaptive triangulation is probably not
warranted.

ISM uses points sampling to approximate the geometry
of the scene, which is rendered by splatting and pull-push
operations to generate a low-resolution shadow map for every
light source. In our experiments, we use about 12,000 point

@ Springer

samples to render each of the 1024 128 x 128 ISMs, which
yields a frame rate comparable to that of our method. Table 2
shows that our method has a smaller average shadow intensity
error for our scenes.

Tables 3, 4 and 5 show the dependency of the approxi-
mation error on the resolution of the intermediate shadow
maps, on the resolution of the approximate shadow maps
computed for each light and on the number of intermediate
shadow maps, for the Dragon scene. As expected, the error
decreases as the three parameters increase. For this scene, the
values of the three parameters after which returns diminish
are 128 x 128,512 x 512 and 10.

The viewpoints of our intermediate shadow maps are dis-
tributed evenly in the scene to achieve a good sampling of
geometry. The same reference viewpoints are used for all
frames, which brings simplicity and good temporal coher-
ence. In the scenes described so far, the desired viewpoint is
outside, looking in at the scene. In such an outside-looking-in
case, we place the intermediate shadow map viewpoints out-
side the scene, and the view directions are aimed at the scene.
We have also tested our method with an inside-looking-out
scene Sponza. In this case, we set the viewpoints inside the
scene, distributed uniformly, and with view directions aimed
at the center of the scene. Figure 5 gives a top view illustra-
tion of the reference camera placement. Figure 6 shows our
results compared to ground truth, as well as shadow error
images. The errors are 5.5 and 4.0%, and our method is 3
times faster than ray tracing.

Our method is intended for soft shadows resulting from
hundreds of light sources whose shadows interfere. How-
ever, our method also supports hard shadows, as shown in
the accompanying video and in Fig. 7. Quality hard shad-
ows are obtained because scene geometry is approximated
in detail with hundreds of thousand of triangles, which are
used to compute high-resolution shadow maps for each light.
This is a particular strength of our method compared to other
methods such as ISM, which do not demonstrate hard shad-
ows.

4.2 Performance

We have compared the performance of our algorithm to that
of NVIDIA’s Optix ray tracer and to conventional shadow
mapping that renders a shadow map for each light from the
original scene geometry. Table 6 provides the frame render-
ing times for all three methods, broken down into INSM
rendering and triangulation (T), and shadow computation

Intermediate shadow maps for interactive many-light rendering

1421

Fig. 4 Comparison between ray tracing (first column), our method
(second column) and imperfect shadow maps (fourth column). The
approximation introduced by ISM translates into noticeable shadow
errors. The third and fifth columns visualize the approximation errors

using the INSMs (S). The time needed to render and triangu-
late the INSMs is negligible compared to the time needed
to compute the shadows using the INSMs. Our method
is between 11.8x and 24.9x faster than ray tracing and

of our method and of ISM, respectively. The error is scaled by a factor
of 5 for illustration purposes. Red/green highlights pixels that are too
bright/dark

between 5.0x and 17.5x faster than conventional shadow
mapping. The speedup comes from replacing the original
scene geometry with the triangle meshes reconstructed from
the intermediate shadow maps, when computing the individ-

@ Springer

1422 L. Wang et al.

Table 2 Average pixel shadow Scene Dragon Church Carousel City Plane Grass

errors and root mean squared

error (RMSE) for our method Ours (%) 0.1 0.7 11 0.8 3.4 3.9

and for the prior imperfect

shadow Maps method ISM (%) 3.9 5.8 47 4.6 10 9.0
Ours RMSE 0.94 1.7 2.4 2.4 3.3 4.5
ISM RMSE 8.6 10 8.6 8.6 11 8.6

Table 3 Approximationerroras o C 1 ion of INSM 64 x 64 128 x 128 256 x 256 512 x 512

a function of intermediate

shadow map resolution Avg. pixel error (%) 0.56 0.12 0.09 0.08

Table d Approximationerroras o1 ion of INSM 256 x 256 512 x 512 1024 x 1024 2048 x 2048

a function of individual light

shadow map resolution Avg. pixel error (%) 0.18 0.12 0.10 0.09

Table 5 Approximation error as a function of the number of interme-
diate shadow maps

Number of INSMs 6 8 10 12

Avg. pixel error (%) 0.30 0.16 0.12 0.11

~
e
o S

Fig. 5 Reference viewpoint placement for the intermediate shadow
maps for the Sponza scene. The cameras are shown by the dots, and
their view directions are shown the arrows

M

ual light shadow maps. The numbers of triangles in these
meshes are given in Table 1 for the Dragon, Planes, City,
Grass, Carousel and Church scenes, which are considerably
less than the numbers of triangles in the scene models. For
a scene with N triangles, for k intermediate shadow maps
of resolution w x w and for n lights, the number of tri-
angles rendered by our method is at most kN + 2nkw?,
where we counted two reconstructed triangles per interme-
diate shadow map sample. Conventional shadow mapping
renders nN triangles, so our method scales much better with
scene geometric and lighting complexity.

In our experiments, we tried to perform an equal qual-
ity comparison to ISM by increasing the number of scene
point samples used in ISM. No matter how much we
increased the number of point samples, ISM quality remained
inferior to the quality of our method. Once the num-
ber of point samples increases above what can be han-

@ Springer

Fig. 6 Sponzainside-looking-out scene with 1024 lights rendered with
our method (top) and with ray tracing (middle). The approximation
errors of our method are 5.5% (left) and 4.0% (right). We visualize
the approximation errors scaled up by a factor of 5, with red/green
highlighting pixels where the images are too bright/too dark

dled by the GPU in a single pass, the additional ren-
dering pass made performance slower than that of ray
tracing.

Intermediate shadow maps for interactive many-light rendering

1423

L0 MR

Fig. 7 Dragon scene with 1 light rendered with ray tracing (left) and
our method (middle). The approximation errors of our method are 0.4%
(right). Pixels where the images are too bright/too dark are shown with
red/green

Table 6 Frame rendering times in milliseconds for our method (INSM),
for conventional shadow mapping (SM), and for ray tracing (RT)

Scene INSM SM SM/INSM RT RT/INSM
T S
Dragon 65 780 4,200 5.0x 10,000 11.8x
Church 59 685 13,000 17.5x 18,500 24.9x
Carousel 73 762 8300 9.9x 14300 17.1x
City 86 874 7300 7.6% 12,500 15.2x
Planes 58 435 4,100 8.3x 10,500 21.3x
Grass 76 604 9,400 13.8x 16,000 23.5x

For INSM, the frame time is broken down into the time needed for
INSM rendering and triangulation (T) and the time needed to compute
shadows from using the INSMs (S)

14,000

12,000

Frame time [ms]
£ 8% £
g 8 8 §

8
8

64x64 128x128 256x256

Intermediate shadow map resolution
~—8—Dragon =—@=planes City ==@=grass =@ carousel

512x512

church

Fig. 8 Frame rendering time as a function of the linear resolution of
the intermediate shadow maps

The graphs in Figs. 8, 9 and 10 confirm the quadratic
dependence of performance on the linear resolution w of the
intermediate shadow maps and the linear dependence on the
number of intermediate shadow maps and on the number of
lights.

The graph in Fig. 11 confirms that the resolution of
the shadow maps computed for individual lights does not
affect performance much, which indicates that rendering the
individual light shadow maps is geometry and not fill-rate
bound.

1200
1000
800
600

MW"

200

Frame time [ms]

6 8 10 12
Number of intermediate shadow maps

—@—Dragon =@ planes City ==@=grass =@ carousel church
Fig. 9 Frame rendering time as a function of the number of interme-

diate shadow maps

2,000
1,800
— 1,600
(%]
£ 1,400
© 1,200
£ 100
=
GEJ 800
s 600
400
200
0
1 128 1,024 2,048

Number of lights

—8—Dragon —@— planes city —@—grass —@®—-carousel church

Fig. 10 Frame rendering time as a function of the number of lights in
the scene

1,400
1,200
1,000
800

- /

400 — ~

Frame time [ms]

200

128x128 256x256 512x512 1024x1024

Individual light shadow map resolution

—@-—Dragon =@ planes City =@==grass =@ carousel church

Fig. 11 Frame rendering time as a function of the resolution of the
individual light shadow maps

4.3 Limitations

As discussed, our method approximates blocker geome-
try with intermediate shadow maps, which can result in
light leaks when the blocker geometry is not sampled well
enough. Insufficient sampling can be caused by high depth
complexity, i.e., many occluding layers, or by high sur-
face complexity, i.e., minute details. Our method provides
a straightforward approach for mitigating these challenges:

@ Springer

1424

L. Wang et al.

increasing the number of intermediate shadow maps and
increasing the resolution of intermediate shadow maps. Ade-
quate values for these two essential parameters should be
determined based on the scene and based on the application.

In this work, we have chosen to place the intermediate
shadow maps uniformly, according to the inside-looking-out
and the outside-looking-in cases, as described in Sect. 4.1.
This simple placement of the intermediate shadow maps pro-
duces good results for a variety scenes, with a small number
of intermediate shadow maps. Future work could consider
optimizing the placement of intermediate shadow maps, in
order to maximize coverage for a given number of intermedi-
ate shadow maps, borrowing from the large body of literature
on the “next best view” problem. Our uniform placement has
the advantage of supporting dynamic scenes without the cost
of recomputing the intermediate shadow map placement for
every frame.

Another limitation of our approach is that, in order to
surpass the performance of conventional shadow mapping,
the scene has to be sufficiently complex such that the triangle
meshes reconstructed from the intermediate shadow maps be
less expensive than the original scene model, and the num-
ber of lights should be sufficiently large such that these per
light gains accumulate to overtake the initial start-up cost of
rendering and triangulating k intermediate shadow maps.

5 Conclusions and future work

We have presented a general and efficient method for ren-
dering shadows for many light sources. The method handles
robustly fully dynamic scenes with millions of triangles and
a thousand light sources and renders high-quality soft shad-
ows. Our method decreases the redundancy of conventional
shadow mapping a large number of lights by only rendering
the scene geometry a small number of times to generate inter-
mediate shadow maps, which are then used to approximate
visibility from the individual light sources. The intermediate
shadow maps are rendered for every frame, from the same
set of uniform reference sampling locations. The intermedi-
ate shadow maps contain much of the visibility information
needed for the many light sources. We extract this informa-
tion carefully by reprojecting the intermediate shadow maps
to the viewpoints of the individual lights. We do not approxi-
mate visibility by interpolation, since visibility is notoriously
nonlinear. We do not cluster lights, and we truly estimate vis-
ibility for each one of the many individual lights. Our lights
are free to change from a uniform distribution to a clustered
distribution or even to converge to a single point, and our
method produces quality shadows, gradually changing from
soft to harder and then to hard shadows, without temporal
artifacts.

@ Springer

We compared our results to ground truth obtained by ray
tracing and to conventional shadow mapping over a variety of
scenes, and we showed that our method brings a substantial
performance gain at the cost of only small approximation
errors.

Our method makes progress in the direction of substan-
tially increasing the number of lights that are available to
interactive graphics applications. An important direction of
future work is to provide algorithmic support for lighting
design by automatically placing and calibrating the indi-
vidual light sources. Another direction of future work is to
investigate the extension of our method to global illumina-
tion where surface samples become virtual point light sources
from where secondary light rays originate.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China through Projects 61272349,
61190121 and 61190125 and by the National High Technology
Research and Development Program of China through 863 Program
No.2013AA01A604.

References

1. 3ds max. http://www.autodesk.com/products/3ds-max/overview
(2016)

2. Simplygon. https://www.simplygon.com/ (2016)

3. Akerlund, O., Unger, M., Wang, R.: Precomputed visibility cuts
for interactive relighting with dynamic brdfs. In: Conference on
Computer Graphics and Applications, pp. 161-170 (2007)

4. Cheslack-Postava, E., Wang, R., Akerlund, O., Pellacini, F.: Fast,
realistic lighting and material design using nonlinear cut approxi-
mation. ACM Trans. Graph. 27(5), 32-39 (2008)

5. Dachsbacher, C., Kfivanek, J., Hasan, M., Arbree, A., Walter, B.,
Novdk, J.: Scalable realistic rendering with many-light methods.
In: Sbert, M., Szirmay-Kalos, L. (eds.) Computer Graphics Forum,
vol. 33, pp. 88—104. Wiley Online Library (2014)

6. Davidovi¢, T., Kfivanek, J., Hasan, M., Slusallek, P., Bala, K.:
Combining global and local virtual lights for detailed glossy illu-
mination. ACM Trans. Graph. 29(6), 143:1-143:8 (2010). https://
doi.org/10.1145/1882261.1866169

7. Dong,Z., Grosch, T., Ritschel, T., Kautz, J., Seidel, H.P.: Real-time
indirect illumination with clustered visibility. In: Proceedings of the
Vision, Modeling, and Visualization Workshop 2009, November
16-18, 2009, Braunschweig, Germany, pp. 187-196 (2009)

8. Feris, R., Raskar, R., Tan, K.H., Turk, M.: Specular reflection
reduction with multi-flash imaging. In: Proceedings of the Com-
puter Graphics and Image Processing, X VII Brazilian Symposium,
SIBGRAPI *04, pp. 316-321, Washington, DC, IEEE Computer
Society (2004)

9. Hasan, M., Pellacini, F., Bala, K.: Matrix row-column sampling
for the many-light problem. ACM Trans. Graph. 26(3), 26 (2007).
https://doi.org/10.1145/1276377.1276410

10. Holldnder, M., Ritschel, T., Eisemann, E., Boubekeur, T.: Many-
LoDs: parallel many-view level-of-detail selection for real-time
global illumination. Comput. Graph. Forum 30(4), 1233-1240
(2011). https://doi.org/10.1111/j.1467-8659.2011.01982.x

11. Huo, Y., Wang, R., Jin, S., Liu, X., Bao, H.: A matrix sampling-and-
recovery approach for many-lights rendering. ACM Trans. Graph.
(TOG) 34(6), 210 (2015)

http://www.autodesk.com/products/3ds-max/overview
https://www.simplygon.com/
https://doi.org/10.1145/1882261.1866169
https://doi.org/10.1145/1882261.1866169
https://doi.org/10.1145/1276377.1276410
https://doi.org/10.1111/j.1467-8659.2011.01982.x

Intermediate shadow maps for interactive many-light rendering

1425

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Kristensen, A.W., Akenine-Moller, T., Jensen, H.W.: Precomputed
local radiance transfer for real-time lighting design. ACM Trans.
Graph. 24(3), 1208-1215 (2005)

Nichols, G., Penmatsa, R., Wyman, C.: Interactive, multiresolution
image-space rendering for dynamic area lighting. In: Lawrence,
J., Stamminger, M. (eds.) Computer Graphics Forum, vol. 29, pp.
1279-1288. Wiley Online Library (2010)

Oliveira, M.M., Bishop, G., McAllister, D.: Relief texture map-
ping. In: Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 00, pp. 359-
368. ACM Press, New York (2000)

Olsson, O., Billeter, M., Sintorn, E., Kampe, V., Assarsson, U.:
More efficient virtual shadow maps for many lights . IEEE Trans.
Vis. Comput. Graph. 21(6), 701-713 (2015). https://doi.org/10.
1109/TVCG.2015.2418772

Olsson, O., Sintorn, E., Kdmpe, V., Billeter, M., Assarsson, U.: Effi-
cient virtual shadow maps for many lights. In: Proceedings of the
18th Meeting of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, pp. 87-96. ACM (2014)

Paquette, E., Poulin, P., Drettakis, G.: A light hierarchy for fast
rendering of scenes with many lights. In: Ferreira, N., Gobel, M.
(eds.) Computer Graphics Forum, vol. 17, pp. 63—74. Wiley Online
Library (1998)

Popescu, V., Eyles, J., Lastra, A., Steinhurst, J., England, N.,
Nyland, L.: The warpengine: an architecture for the post-polygonal
age. In: Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH 2000, New
Orleans, 23-28 July 2000, pp. 433—442 (2000)

Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.P.,, Kautz, J.,
Dachsbacher, C.: Micro-rendering for scalable, parallel final gath-
ering. ACM Trans. Graph. 28(5), 89-97 (2009)

Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher,
C., Kautz, J.: Imperfect shadow maps for efficient computation of
indirect illumination. ACM Trans. Graph. 27(5), 32-39 (2008)
Ritschel, T., Grosch, T., Kautz, J., Eller, S.: Interactive illumination
with coherent shadow maps. In Proceedings of the EGSR 2007, pp.
61-72 (2007)

Ritschel, T., Grosch, T., Kautz, J., Seidel, H.P.: Interactive global
illumination based on coherent surface shadow maps. In: Proceed-
ings of Graphics Interface 2008 (2008)

Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M.,
Greenberg, D.P.: Lightcuts: a scalable approach to illumination.
ACM Trans. Graph. 24(3), 1098-1107 (2005)

Walter, B., Khungurn, P., Bala, K.: Bidirectional lightcuts. ACM
Trans. Graph. 31(4), 13-15 (2012)

Wang,R.,Huo, Y., Yuan, Y., Zhou, K., Hua, W., Bao, H.: Gpu-based
out-of-core many-lights rendering. ACM Trans. Graph. (TOG)
32(6), 210 (2013)

Wu, Y.T., Chuang, Y.Y.: Visibilitycluster: average directional visi-
bility for many-light rendering. IEEE Trans. Vis. Comput. Graph.
19(9), 1566-1578 (2013)

Yang, T., Hui-zhong, W., Fu, X., Liang, X.: Inverse image warp-
ing without searching. In: International Conference on Control,
Automation, Robotics and Vision, pp. 386-390 (2004)

Lili Wang received the Ph.D.
degree from the Beihang Uni-
versity, Beijing, China. She is
a professor with the School of
Computer Science and Engineer-
ing of Beihang University, and
a researcher with the State Key
Laboratory of Virtual Reality
Technology and Systems. Her
interests include real-time ren-
dering, realistic rendering, global
illumination, soft shadow and
texture synthesis.

Wenhao Zhang received his
B.S. degree in computer sci-
ence in China University of Geo-
sciences in 2016. He is cur-
rently working toward his Master
degree in the State Key Labo-
ratory of Virtual Reality Tech-
nology and Systems at Beihang
University. His research interests
include global illumination and
real-time rendering.

Nian Li received his B.S. degree
at Beihang University in 2012
and received M.S degree in com-
puter science in the State Key
Laboratory of Virtual Reality
Technology and Systems at Bei-
hang University in 2016.

@ Springer

https://doi.org/10.1109/TVCG.2015.2418772
https://doi.org/10.1109/TVCG.2015.2418772

1426

L. Wang et al.

@ Springer

Boning Zhang received his B.S.
degree in Mathematics in North-
western Polytechnical Univer-
sity in 2013. He earned his M.S
degree in Computer Science in
the State Key Laboratory of Vir-
tual Reality Technology and Sys-
tems at Beihang University in
2016, and is working in Perfect
World Company now.

Voicu Popescu received a B.S.
degree in computer science from
the Technical University of Cluj-
Napoca, Romania in 1995, and a
Ph.D. degree in computer science
from the University of North Car-
olina at Chapel Hill, USA, in
2001. He is an associate profes-
sor with the Computer Science
Department of Purdue Univer-
sity. His research interests lie in
the areas of computer graphics,
computer vision, and visualiza-
tion. His current projects include
camera model design, visibility,

augmented reality for surgery telementoring, and the use of computer
graphics to advance education.

	Intermediate shadow maps for interactive many-light rendering
	Abstract
	1 Introduction
	2 Previous work
	2.1 Ray tracing-based methods
	2.2 Shadow mapping-based methods

	3 Intermediate shadow maps
	3.1 Algorithm overview
	3.2 Intermediate shadow map triangulation

	4 Results and discussion
	4.1 Quality
	4.2 Performance
	4.3 Limitations

	5 Conclusions and future work
	Acknowledgements
	References

