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Abstract A powerful approach for rendering high-quality
images at low cost is to exploit temporal coherence by
projecting already computed images into a novel view. How-
ever, conventional temporal coherence projection methods
assume pixel values remain almost unchanged from frame to
frame,which does not extendwell to reflection rendering.We
present a novel projection method to reuse reflections from
adjacent frames. A novel reflection reprojection method is
introduced to establish the mapping of reflections between
individual frames. By reusing the information from the refer-
ence frame, our method can reduce the overall workloads of
reflection computation, which makes rendering efficiently.

Keywords Specular reflections · View-dependent
rendering · Temporal coherence rendering

1 Introduction

In most real-time 3D computer graphics applications, reflec-
tions are integrated to convey the relative position between
reflectors and reflected objects, and to give users better shape
and material perception. Still, most applications apply only
environment mapping (an image-based approximation of
reflectors surrounding the rendered object at a large distance)
as a substitution for physically accurate reflection rendering.
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The main reason is the complexity of tracing reflected
rays into the scene. Nowadays, GPUs are powerful in com-
puting the intersections of viewing rays and the scene
in a feed-forward rendering pipeline fashion. Although
they are efficient in generating the shading point at each
pixel sample, they are unsuitable for modeling reflected
rays which usually do not pass through a projection cen-
ter that provide a fast triangle projection in the pipeline.
Ray tracing is a general approach that naturally supports
reflection rendering, but the overall performance is often a
concern.

The idea of exploiting Temporal Coherence (TC) to alle-
viate expensive shading operations has evolved to handle
multiple rendering effects such as diffuse global illumi-
nation rendering [12], soft shadows [24,26] and ambient
occlusion [16]. The basic scenario is to generate a new
frame by reprojecting data from a previously shaded frame.
These approaches are efficient, in that TC rendering uses the
correlation between adjacent frames rather than wastefully
regenerating every pixel from scratch. The assumption of
this approach is that pixel values remain almost unchanged
and only depend on the scene geometry and configuration of
the light source (view-independent component). The shad-
ing information of reference frames can be projected with
depth value in-between viewports. This depth-based pro-
jection method is efficient to generate images containing
view-independent components. However, it fails to render
convincing images with scenes containing reflective mate-
rials. The reason is reflections are view dependent and
rendering reflections imply solving the additional problem
of tracing each reflected ray into the scene for each reflec-
tive pixel. Therefore, reflections cannot be approximatedwell
by view-independent component, and consequently, clas-
sic depth-based projection methods produce large errors for
reflections as illustrated in Figs. 1 and 6.
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Fig. 1 Specular reflections generated by naïve image warping (left),
our method (middle) and ray tracing (right). Naïve image warping
produces inconsistent reflections because it assumes the reflection

color remains unchanged in-between viewpoints. Our method produces
convincing reflections compared to the ground truth while 77.1% of
reflection intersection workloads are reduced in total

In this paper, we propose a new TC reflection rendering
method to handle the projection of reflections in-between
two frames. Our method is a general method of TC projec-
tion and is based on the idea that most specular reflection
colors shift rather than attach still to the surface on reflectors
from frame to frame (Fig. 2). We can reuse these coherences
to amortize the total workloads since fetching the reflections
shading information in the reference image is more effec-
tive than computing the intersection between the reflected
ray and the scene. In our method, reflection colors and depth
values calculated by ray tracing are stored in the reference
frame’s buffers and are potentially projected between adja-
cent frames. An offset vector buffer is used to store per-pixel
forward movement vector that approximates the shifting of
reflections on the surface. The new image from the new view-
point can be efficiently generated by shifting the reference
image pixels based on the corresponding forward offset vec-
tor. For the reflective pixels whose reflections generated by
reflected objects that do not exist in the reference frame’s
buffer, or those whose confidence of their footprints in the
reference image is too low, ray tracing is used to re-calculate
the reflections for these pixels. We reduce a large portion of
reflection rendering workloads (77.1% for Toilet, 82.4% for
Living Room in total) without introducing obvious errors for
the subsequent frames and overall performance is improved.

The main contributions of our work are summarized as:

• Reflection buffers introduced to represent the geometry
surfaces intersected not only by viewing rays but also by
reflection rays.

• An analytic method for screen-space pixel in reflection
buffer tomeasure howwell this pixels reflected geometry
matches the reflection functionwhen the incident ray shot
from the current camera position.

reflector

Eold Ecur

s

s

B s.d
s.r

s.Lr

reflected surface

Fig. 2 Reflections shift in the reference image from s to s∗ when the
camera moves from Eold to Ecur

• A novel temporal coherent approach to accelerate reflec-
tion rendering by reusing reflections in reflection buffers.

Our method is independent of ray tracing techniques and
can be integrated into most of ray tracing methods which
can return the reflected rays depth and value to reduce the
workloads of reflection rendering.

2 Related work

2.1 Reflection rendering

Ray tracing The classical ray tracing method [7,34] can
be used to render reflective objects, but is seldom used for
interactive applications due to its high computation costs.
Moreover, some scenes including a lot of glossy or reflective
objects with complex BRDFs are very expensive to simulate.
CPU-based ray tracing acceleration algorithms [19,32] and
GPU-based parallel algorithms [23] are able to improve per-
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formance. Reorganizing the 3D scene into KD-trees [5],
BVHs [2] or LODs [35] gives further improvements of
rendering speeds. Li et al. [14] used a texture lookup on
the geometry fields to replace conventional expensive inter-
section testings, which achieved real-time frame rates. Yu
et al. [37] explored a mipmap for geometry images to
accelerate ray tracing and can render glossy reflections inter-
actively. While both geometry fields and geometry images
the reflected objects in the scenes need to been generated
with pre-computation, these two methods are hard to use for
deformable objects.

Image-based rendering Light field methods [8,13] cap-
ture reflections from different viewpoints, and synthesize
reflections from the new viewpoints with indexing and inter-
polate the color from the sample images without significant
extra cost. Heidrich et al. [10] created and stored ray-to-
ray mapping in a lumigraph, which allowed the users to
change reflective objects or the reflected scene independently.
Taguchi et al. [30] captured light fields when moving the
camera according to the reflectors rotation axis, and reduced
the aliasing artifacts caused by planar light field for curved
reflectors.Yu et al. [36] combined the light fieldwith environ-
ment maps and constructed an environment light field map,
which can be used to render accurate reflections nearby. Light
field-based methods can only render static reflective scenes
because of off-line light field sampling and generation.

Projection approximation Projection approximation
methods use the forward rendering pipeline to generate the
reflection of a given reflector and achieve high performance
for interactive applications. Explosion map-based meth-
ods [1] transfer and deform the potential reflected objects
and render them into a reflection image with ordinary per-
spective projections. Estalella et al. [4] rendered the vertices
and normals of the reflector into textures and executed local
searching using the fragment shader, which allowed parallel
computation of the virtual vertices. The reflection image was
merged to the primary image to synthesize the final result.
These three methods suffer three main problems. (1) They
need to determine the reflectors and all potential reflected
objects before the virtual reflected objects generation; (2) a
lot of virtual reflected objects need to be constructed and ren-
dered if the scene contains many objects; (3) there are some
occlusion errors that still need to be fixed. Sample-based
cameras [22] are presented to avoid the problems above. It
is a group of pinhole cameras which are organized in a BSP
tree and can capture accurate reflections of curved reflectors.

Reflected-scene approximation methods The main idea
of the reflected-scene approximation method is to com-
pute reflection rays according to the surface BRDFs and
then approximate the reflected objects with more simple
geometries, such as a cubic environment map [9,11]. Kautz
and McCool [11] introduced an optimization algorithm
to filter specular environment maps to render the glossy

reflection of the object with single or multiple lobes of
BRDFs. Green et al. [9] used a nonlinear approximation of
the BRDF as a weighted sum of isotropic Gaussian func-
tions, and pre-computed self-occlusion that enabled accurate
and efficient prefiltered environment map rendering. Kalos
et al. [29] added the distance values for environment map
texels and obtained the hit point by a reflection or refrac-
tion ray. Popescu et al. [21] presented a method to construct
impostors with depth maps instead of real geometry to accel-
erate computation. Wang et al. [33] proposed an approach
to approximate the geometry reflected by cluster cameras.
McGuire and Mara [17] presented an efficient GPU solu-
tion for screen-space ray tracing and Vardis et al. [31]
extended it on a multiview and multilayered scheme. Hybrid
approaches combining screen-space approximation methods
with ray tracing techniques were used to offer off-screen
reflections [6] and achieve a performance improvement [3].
Our method fits in this category by regarding the previous
rendered reflection image with depth values as an approxi-
mation of reflected objects.

2.2 Temporal coherence rendering

The temporal coherence approach reuses data from previ-
ously generated frames by reprojecting it into a new frame
and was proposed independently by Scherzer et al. [24]
(referred asReverse Reprojection) andNehab et al. [18]. This
technique records an off-screen buffer, the so-called history
buffer, payload buffer or cache holding the previously gen-
erated pixel data. When rendering consecutive frames, data
in the buffer are reprojected to its new image space position
that represents the same world space position according to
the scene motion whenever possible; otherwise, a new value
has to be calculated from scratch.

A variety of algorithms have been developed by using
Reverse Reprojection approach as a framework, including
rendering acceleration by reformulating previous data as
temporal incremental [24,26]; quality increment by tak-
ing into account generated rendered results in previous
frames [16,27,28], or by relocating rendering workloads into
a series of frames [25].

Reflective and refractive image warping is discussed in
[15] and proposes an approach to synthesize novel images
with reflection and refraction shading by image warping.
In contrast to this research, we concentrate on rendering
an accurate reflection rendering affect and suggest a stable
approach for projecting reflections into the new frame.

3 Reflections projection using temporal coherence

Our method renders reflections using TC with the follow-
ing procedure. First, the diffuse component is generated by
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taking a renderingpass. Second, for the key frames, the reflec-
tions are generated with ray tracing techniques and stored in
the reflection buffers together with other attributes (Sect. 3.1)
and followed by a blending operation. For the other frames,
we reduce the total workloads of reflection rendering by
projecting the reflection color from the corresponding key
frame into the current view in the reflection projection stage
(Sect. 3.2). In the final compositing stage, the reflection col-
ors of the area where the reflection projection has failed have
to be re-evaluated and a blend operation is used to combine
different components to render the current frame (Sect. 3.3).

Algorithm 1 Rendering reflection with temporal coherence
1: Shade an image with diffuse components from the output viewpoint
2: if current rendering frame is the key frame then
3: Generate reflection buffers
4: Blend the output image with the reflection buffers
5: else
6: Temporal coherence-based reflection reprojection using the key-

frame reflection buffer
7: Output image composition
8: end if

3.1 Reflection buffers generation

Inspired by history buffers from [24], we introduce the term
reflection buffers as a series of textures representing the
geometry surfaces intersected with the reflected rays as well
as the viewing rays. To generate reflections in novel views,
they are used to produce a reflection projection method to
be applied to each pixel in the reflection buffers. The reflec-
tion buffers include a world normal texture, a depth texture,
a material texture and a reflection texture.

Given a scene S modeled with triangle mesh consisting of
diffuse and reflective objects, and a camera position E , for
each pixel s, the reflection buffers B contain the following
information (Fig. 2):

B.1 : the normal s.n and depth s.d;
B.2 : specular factor s. f ranging from 1 for perfectly spec-

ular surface to 0 for perfectly diffuse surface;
B.3 : reflecting color s.Lr encoding the illuminance of

reflected surfel as RGB component;
B.4 : distance s.r storing the reflected ray’s traveling dis-

tance from the reflector surface to the reflected surfel.

Besides the data commonly required for shading diffuse
computation in deferred shading such as B.1, other infor-
mation like B.3 and B.4 is used to restore the shading and
position information of reflected geometries via Snells Law,
e.g., in Lochmann et al. [15]. After the reflection projec-
tion, the result image is rendered by interpolating the diffuse

component and the projected reflections with the specular
factor held in B.2. The first two parts in the reflection buffers
(B.1 and B.2) are generated by taking a shading pass over
the entire scene. Normal and depth information is generated
by interpolation of the hit triangle. The last two parts (B.3
and B.4) can be generated with most reflection ray tracing
techniques. The reflection buffers are updated when render-
ing the reference image and reused to generate the following
frame sequences.

3.2 Temporal coherence-based reflection reprojection
(TCRR)

Depth-based warping is used as a common method using
temporal coherence. The main idea is to find which pixel in
the new frame has also been recorded in the reference image
by creating a temporal coherence mapping function from the
history buffers into the current view. This mapping function
describes a pixel’s offset move vector in the reference image
due to the camera movement between two frames.

With regard to a view-independent component mapping
function, the mapping function is based on the notion that
there is little shading difference over the visible surface
between two consecutive frames. Given a current camera
Ecur, for every pixel sample s in the reflection buffers with
view-independent component and depth s.d, the sampled 3D
surface positionW can be calculated by back-projection into
the world coordinate space. Hereby, we define W together
with the normal value s.n as the sampling geometry which
describes the tangent plane of the shading point intersected
by viewing ray at sample s. Consequently, in the new image,
we can simply use the Model View Projection Matrix of
the current camera to find the corresponding location scur.
This validity of depth projection is checked by comparing
the depth difference between scur and s to a given threshold
ε: |scur.d − s.d| < ε. To avoid the situation that multiple
pixels map to the same new image location, the depth of the
new pixel scur.d, as well as view-independent component
is passed into reprojection procedure as the z value for the
purpose of depth testing.

With regard to the view-dependent component mapping
function, the assumption of depth-based warping is invalid
because the view-dependent component varies according to
the change in camera position. Taking reflection as an exam-
ple, the reflective objects extend and perturb rays according
to the law of reflection, and the hit-points of reflected rays
vary accordingly. Thus, reflection changes second-orderwith
respect to the camera movement.

We present a novel projection method to reuse reflections
using temporal coherence. The idea comes from a generaliza-
tion of the assumption in depth-basedwarping that reflections
have coherence in-between frames by shifting over the reflec-
tor’s surfacewhen the cameramoves.Consider the reflections
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Fig. 3 TCRR pipeline. a Specular reflection information is stored in
the reflection buffers. Diffuse objects are visualized in gray. b An off-
set vector buffer is generated after reflection pixel matching step. c
The intermediate reflection image is generated by shifting the reflec-
tion image with the value in the offset vector buffer in reflection shifting

step. Pixels with no valid footprints in the reflection buffers are set an
invalid bit mask (shown in red). d The intermediate reflection image is
projected with depth buffer in reflection warping step. After the TCRR,
if an invalid bit mask is detected, a new reflection color is detected by
the ray tracing techniques; otherwise, the stored reflections are reused

in the reference frame, many of them can find their existence
in subsequent frames.We exploit this idea by first finding the
best reflection color matching pixels in the reflection buffers
for each pixel in the current frame (Sect. 3.2.1). Then, we
project the reflections in reflection buffers toward itsmatched
position in the current frame to generate an intermediate
reflection image (Sect. 3.2.2) and finally warp this image
into the novel view, as per the following steps (Fig. 3):

1 Reflection pixel matching step. For every pixel s in reflec-
tion buffers B, this step determines the most fitting pixel
position s∗ in B that its reflection color best approxi-
mates the reflection color in the novel view. Afterward,
the offset from s to s∗, which approximates the reflec-
tions movement on the corresponding scene surfaces, is
stored in an offset vector buffer (Fig. 2).

2 Reflection shifting step. Given the offset vector buffer, the
intermediate reflection image with shifted reflections is
produced by projecting each pixelwith its reflection color
to the offsetting position indicated in the offset vector
buffer.

3 Reflection warping step. Depth-based warping method is
used to project the intermediate reflection image into the
current view.

3.2.1 Reflection pixel matching

The reflection pixel matching step defines a per-pixel map-
ping in the reference image from its position to the best
matched position with the most similar reflection color when
the reflected ray’s incident ray is shot from the current cam-
era position.However, finding amapping between the current
and the reference reflection is challenging. The pixel in the

current reflection defines a reflected ray, and the reference
reflection defines a sampling of the scene geometry, so one
option is to intersect the reflected raywith the sampled geom-
etry, which is expensive. There is no closed form mapping
between the current and reference reflection, since such a
mapping depends on the scene geometry. Given a pixel in the
current frame forwhichwehave to compute the reflection,we
search for the corresponding pixel in the reflection buffers.
Ourmethod searches the best matched pixel by giving an dis-
tance function to each pixel describing how well this pixel’s
sampling geometry matches the reflection function with the
incident ray shot from the current camera position. The pixel
with the minimum distance defines the best matched pixel.
We design this distance function based on the following prin-
ciples:

a : This function should be flexible, supportive of concave,
planar and convex reflectors;

b : This function should be local, only taking the pixel in
reflection buffers as input parameters;

c : This function should be convergent; the function value
generated by the best matched point has the minimum
value.

Given a pixel sample s in reflection buffers B and a camera
moving from Eold to Ecur, the reflected object R position
can be easily calculated by retrieving the reflection distance
in reflection buffers. The distance function with respect to a
pixel sn defines how well sn can approximate the reflected
ray that emitted from Ecur and reflected to the target reflected
position R. We regard the pixel with minimum distance as
the best matched pixel of s when the camera movement is
applied. Our method uses the distance from Ecur to the ray
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Fig. 4 Illustration of calculating the distance value with respect to s’s
neighbored pixel sn

that starts at the mirroring point M of R and passes through
sn’s sample surface Wn as the distance function (see Fig. 4).
The virtual position M is determined by mirroring R with
respect to the sampling geometry’s tangent plane defined by
Wn and sn .n. The distance value d with respect to sn is then
defined as the Euclidean distance from Ecur to the ray defined
by M and Wn .

Given this distance function, selecting the best matched
pixel in the reflection buffers with the minimum distance
to the current camera position is still a computationally
hard optimization problem because computing the analytical
expression of the sampling geometry in entire image space
is not feasible as they consist of arbitrary shapes of reflec-
tors. We use a local neighborhood pixels search approach
to find a pixel minimizing this distance function. The local
neighborhood search method moves from the initial pixel
to its best neighborhood pixel where the minimum distance
is found and proceeds until an optimum is found or out
of space. Our approach assumes the distance function con-
verges monotonously within the reflector’s projection area
in the reference image. Otherwise, this approach could be
stuck in a locally optimal point when no improving pix-
els are found in the neighborhood. However, we found that
even for detailed object surfaces, observers have difficulty
in recognizing this false solution. For this reason, the neigh-
borhood pixel searching solution results in a coherent image
with quality reflection rendering. Our neighborhood pixel
searching approach proceeds according toAlgorithm1. Note
that, in neighborhood searching, the further away the dis-
tance from the current frame to the reference image, themore
search steps are needed. For efficiency, the initial searching
pixel can be offset using previous offset buffer to reduce
the local search steps. When the new reference image is
generated, we fill the offset buffer with an INVALID bit

mask to indicate that the pixel searching should start from
the beginning pixel. The reflector’s silhouette is defined by
a depth discontinuity in the depth texture of the reference
image.

Algorithm 2 Neighborhood pixel searching for the best
matched pixel
Input: reflection buffers B, the old viewpoint Eold, the new viewpoint
Ecur , the offset vector buffer Op from the previous frame.
Output:The updated offset vector buffer Oc recording the bestmatched
pixel’s offset vector at the current frame.
1: for each reflective sample s at location (u, v) in B do
2: Fetch sample’s depth s.d , normal s.n, reflection depth s.r at (u, v)

from B
3: Surface position W ← backProj(s.r, u, v)

4: Reflected position R ← reflect(s.n, Eold) · s.r + W
5: Fetch sample’s previous offset o at (u, v) from Op
6: sc ← (o �= INVALID) ? s + o : s
7: formerD ← distance(sc, R, Ecur);
8: while sc is inside B do
9: N ← { a 3 × 3 hollow square neighborhood centered on sc }
10: (smin, dmin) ← min∀sn∈Ndistance(sn, R, Ecur)

11: if dmin > formerD then
12: if sc is inside the reflector’s silhouette then
13: record sc − s at (u, v) in Oc return
14: else
15: record INVALID at (u, v) in Oc return
16: end if
17: end if
18: formerD ← dmin
19: sc ← smin
20: end while
21: record INVALID at (u, v) in Oc

3.2.2 Reflection shifting

The reflection shifting step describes how the data in reflec-
tion buffers are retrieved, reused and mapped to generate
the intermediate reflection image. In this step, we directly
process the reflection buffers and project every pixel to its
new position based on its offset value stored in offset vec-
tor buffer with a forward reprojection method. Most forward
reprojection strategies require a pixel mapping technique to
fill the new picture with the pixels in the reference image.
Basically, there are two primary methods of pixel mapping:
(1) the splatting method, i.e., splatting each example using a
kernel function into a depth buffer with no explicit connec-
tivity (2) The grid method, i.e., drawing meshes constructed
by samples with explicit connectivity.

The multi-splatting rendering method has been devel-
oped that avoids the need of connectivity of samples. The
difficulties for this approach are the estimation of the sam-
ple’s output image footprint which has to be done with
utmost accuracy to avoid having holes between neighbor-
ing samples, while preventing excessive overdraw. Mean-

123



Reflection reprojection using temporal coherence 523

Fig. 5 Left Reflection buffers sample reflected geometry surfaces.
Middle The splatting method suffers from holes magnification when
the current camera moves close to the reflector. These holes can be

filled with other reflected objects. The points in this figure correspond
to pixels in the reference images. Right The grid approach connects
samples with similar depth and removes this issue

while, the grid method utilizes connectivity information
defined by uniform structure of a typical depth image.
In that process, two triangles are used to connect the
four adjacent pixels, unless there is a depth discontinu-
ity that cuts through the pixels. As GPUs power has been
increased dramatically, it can be done efficiently to ren-
der meshes by connecting depth image pixels into two
triangles.

Our reflection projection method uses the grid approach
because it achieves a watertight reflection rendering warping
images with its explicit connectivity, while the holes in the
splatting method will enlarge if the camera moves toward the
reflectors. Even worse, the holes in the splatting method can
be filled with other reflected objects due to motion parallax.
Thus, hierarchical hole filling method such as [8] can hardly
be used under these circumstances (Fig. 5). Our method uses
a grid mesh with the resolution of reflection buffers to gener-
ate the intermediate reflection image. The grid mesh’s vertex
(each corresponding to the center position in a pixel) is ren-
dered to its new position by adding an offset given in the
offset vector buffer, such that its attached reflection informa-
tion is automatically warped into the new frame. Moreover,
conventional depth buffer naturally resolves reflection over-
laps (in Fig. 3, the toilet brush overlaps the wall behind) by
passing sd + sr as depth value.

Thegridmeshes that are separatedby adepthdiscontinuity
form gaps in the intermediate reflection image due to motion
parallax. These gaps, as well as the areas that are un-covered
by the grid mesh due to invalid offset vectors, are set with an
additional single bit mask indicating new reflections should
be re-computed. If a shifted triangle’s size ismagnified above
a certain threshold such that the confidence of extrapolated
reflection color is too low, our method considers it as invalid
as well.

3.3 Output image composition

The intermediate reflection image indicates the reflection
component with respect to the current camera, attached to
the sampling geometry surfaces of viewing rays from the
camera belonging to the referable frame. A common depth-
based warping is used to warp the reflection matching image
into the current view. The disocclusion area caused by depth-
based warping and the pixels with invalid bit mask are filled
with new shadingwith reflections using a ray-tracer. The final
pixel color is computed by interpolating the diffuse com-
ponent and reflection component with weights defined by
Fresnel terms computed from camera position, the geometry
normal and the pixels specular level.

4 Results and discussion

4.1 Implementation

The effects of reflection rendering using temporal coherence
are tested on two indoor scenes with specular reflections:
Living Room (286K triangles, 156K diffuse, 132K reflective,
Fig. 6 top), Toilet Room (90K triangles, 44K diffuse, 46K
reflective, Figs. 1 and 6 bottom). All measurements were
recorded on a PC workstation with an Intel(R) Core i7-4720
CPU, with 16 GB of RAM and an NVIDIA GeForce GTX
980M graphics card. We use NVIDIA’s Optix [20] ray-tracer
with the bounding volume hierarchy acceleration to compute
the reflection color of reflection rays. Our method focuses on
reducing theworkloads of tracing reflected rays by projecting
the reflections from previous frames into the current frame.
Thus, we choose the naive projection method and the pure
ray-tracer (Optix) as our control groups. Our method is inde-
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Fig. 6 Reflections rendering results from Living Room and Toilet with close-up views. Naïve approach (left) suffers from artifacts compared to
the ground truth (right). Our method (middle) can produce specular reflection images of high quality

pendent of other ray tracing techniques and most methods
which are able to return the reflected ray’s depth and value
can reduce their tasks with our method.

We implemented our method in a C++ framework. In
reflection buffers generation, the first two recording parts
(B.1 and B.2) are generated with an OpenGL shader,
while the last two parts (B.3 and B.4) are computed with
Optix. Reflection buffers are stored as a two image-size
RGBA textures by normalizing the normal factor into a two

channel vector. We perform the reflection pixel matching
(Sect. 3.2.1) step on the GPU in CUDA with one thread
per pixel. Reflection shifting step (Sect. 3.2.2) requires
invalid detection for each projected triangle primitive in
the grid. We perform this step with an OpenGL geome-
try shader. In practice, we set the confidence threshold of
area magnification as 16 (i.e., if the projected triangle’s
size is over 16 times of its original size, we discard this
triangle).

123



Reflection reprojection using temporal coherence 525

Fig. 7 Reference images (left) and the newly generated images (right).
The new images are rendered by projecting the reference images with
reflection buffers into the new view. The area that needs re-evaluation is
marked in red. The new rendering areas stay consistent with the reflec-
tion projection areas, and we save time by reducing the total reflection
workloads

4.2 Quality

As shown in Fig. 1, Fig. 6 and the accompanying video,
our method generates specular reflections with a compara-
ble quality to the ground truth. Figure 7 highlights the area
re-calculated by the ray-tracer in red. Unlike naïve image
warping, there is no obvious reflection discontinuity between
reflection projections area and new value detection areas
becausewe calculate reflections according to the current con-
figuration of the viewing camera. Throughout this paper and
the video, both output frames of our method and the control
groups are rendered at a resolution of 1024×1024.The reflec-
tion buffers are generated using an equivalent 1024 × 1024
image resolution.

Our method renders high-quality specular reflections
comparable to ray tracing. Figure 8 shows difference images
between our method and ray tracing. The average absolute
difference intensities are small, i.e., 0.13, 0.45, 0.12 for the

Fig. 8 Left The difference images between our method and ray trac-
ing for images in Figs. 1 and 6. Right Same images with difference
intensities scaled up by a factor of 60

three rows, respectively. The values of difference intensi-
ties are measured by scaling RGB channels values from [0,
1] to [0, 255]. One reason for these artifacts is caused by
local optimal in the pixel searching step where the searching
step fails to converge to the global optimal solution. Another
reason for the artifacts is the different sampling strategy of
reflected geometry. Our method assumes the new image’s
pixel reflection colors exist in the reference reflection buffers
and uses bilinear interpolation to sample the provided reflec-
tion buffer, while Optix generates the reflection color directly
by computing the exact reflected ray with the scene. In real-
ity, the actual reflection shading of one pixel in the current
view (almost) never finds its footage in the reflection buffers
due to the limited sampling rate.

Artifacts are also caused by disocclusion errors introduced
by reflected surfaces that are not present in the reflection
buffers but should be visible in the new image. The reflected
rays in the new images do not travel the exact same path as
in the reference image so it can happen that a few reflected

123



526 N. Xie et al.

Fig. 9 Disocclusion errors are introduced by the reflected rays that
miss the back pillar but hit the wall

rays miss the objects which are not captured in the reference
image but hit other captured surfaces. Figure 9 illustrates this
disocclusion error. One pillar is hidden behind another pillar
in the reference image. In the reflection pixel matching step,
different offset vectors are generated for the pixels of the
front pillar and of the back wall with respect to the camera
movement. In the reflection shifting step, the empty spaces
behind the front pillar are filled with the color from the wall
behind. Then, the ray-tracer does not regard these areas as
invalid. Thus, no-further reflection re-computation is made
and the disocclusion errors are made.

4.3 Reflection-reuse strategy

Reusing reflections involves certain quality/performance
trade-offs. In terms of quality, the reflection buffers can be
projected into many frames continuously and they become
stale with the artifacts discussed in Sect. 4.2. In terms of
performance, the total workloads of reflection rendering are
amortized by TCRR since fetching the reflections shading
information in the reference image is more effective than
computing the intersection between the reflected ray and the
scene. The overall time cost is largely limited by the reflection
re-computing step. The time to do the TCRR is indepen-
dent of the scene configuration and almost a constant. After
the reflection projection, we use relatively time-consuming
ray-tracer to fill the areas where TCRR fails to find valid

footprints. Therefore, the time to create the novel reflections
largely depends on the number of reflection re-computing
pixels.

The total time–cost could be controlled to gain a certain
quality/performance trade-off by setting a threshold for the
total reflection re-computing pixels. We select the reference
images by measuring the time-consuming ray tracing pix-
els’ ratio. At every frame, after TCRR, we count the ratio
of the re-computing pixels’ number to the number of reflec-
tive pixels. If the ratio is beyond our pre-defined threshold,
we update the reference image with new reflection buffers.
Otherwise, we use the reference image to predict the reflec-
tion rendering. In this way, we can balance the workload and
guarantee the reflection quality at the same time. Alternative
strategy like Nehab et al. [18] could be used to update the
pixel by updating pixels in tiled regions periodically. How-
ever, the nonuniformity of reflection quality between updated
and un-updated pixels becomes obvious because of reflec-
tion’s high-frequency signal property (i.e., reflection changes
rapidly in space). Our method is opted for reflection pro-
jection as it is simple to implement, adjustable, predictable
and stable. The decision on better selecting the pre-defined
threshold value depends on several configurations including
the scene, the light, the amount of movement and the desired
reflection quality.

4.4 Performance

Table 1 gives the performance of ourmethod and the compar-
ison to ray tracing. Performance was recorded by rendering
two 500-frame sequences along two individual motion paths
in the Living Room and Toilet. We use 0.3 as the re-
computed pixels’ pre-defined threshold value. That is, if the
re-computed pixels’ number is above 30% of whole reflec-
tive pixels’ number, we refresh the reference image with new
reflection buffers. Otherwise, the reference image is used
to generate reflection of the following frames. The last col-
umn of Table 1 Re-comp. pixels defines the ratio of pixels
in Specular pixels where TCRR is invalid to the number of
reflective pixels.Key-frame intervals illustrates the frequency
of reference images during the frames sequence. Ourmethod
sustains 1.8 speed up factor over ray tracing for the simple
Toilet scene, and an average speedup factor of 3.7 could be
achieved for themore complexLiving Room. The reasonwhy
the minimal performance of our method is comparable to ray
tracing is that these performances are recorded when the ray
tracing technique is used to generate the reflections in the key
frames. In other words, we use the similar technique with ray
tracing to generate the reference images in the key frames.
The difference is that our method stores the reflected infor-
mation in the reflection buffers while ray tracing does not.
We breakdown the approach analysis into individual steps to
better explain our method in the Table 2.
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Table 1 Performance of our method compared to Optix

Scene Specular pixels (%) Optix (fps) Our method (fps) Key-frame intervals Re-comp. pixels (%)

Max Avg Max Min Avg Max Min Avg Max Avg Avg

Toilet 55 45 23.0 13.4 18.5 54.9 13.0 33.4 51 20.6 20.8

58 44 22.4 14.0 18.0 49.5 12.6 34.9 63 20.0 18.9

Liv. Room 62 50 18.6 7.5 9.4 50.8 7.0 34.7 164 53.1 18.7

58 44 12.8 6.4 8.8 48.4 6.6 32.0 92 24.2 18.5

Table 2 Performance in
milliseconds for various
algorithm steps

Stage Step Toilet Living Room

Time (ms)

Diffuse component shading 0.6 (2.0%) 0.7 (2.2%)

TCRR Pixel searching 3.4 (11.6%) 2.2 (7.1%)

Reflection shifting 1.3 (4.4%) 1.7 (5.5%)

Reflection warping 2.7 (9.2%) 2.1 (6.9%)

Final composing Reflection re-comp. 20.3 (69.2%) 23.2 (75.8%)

Blend shading 0.9 (3.1%) 0.7 (2.2%)

Total 29.3 30.5

The average times in milliseconds for the main steps of
our algorithm is given in Table 2. The core of our method,
TCRR method, takes a small portion of total rendering time.
The reflection re-computation step is quite expensive and
accounts for more than half of rendering time. The reason
is that although we reduce the ray tracing workloads by 4/5,
the remaining reflected rays have a higher degree of frag-
mentation and therefore lose the benefits brought by rays’
coherence which is exploited in Optix engine. A constant
software overhead per launch and not generating enough load
on the GPU to keep all streaming multiprocessors busy also
hinder reflection re-computation steps archiving high render-
ing performance.

5 Discussion and conclusion

We have proposed a new approach to accelerate the time-
consuming reflection rendering computation by exploiting
the correlation of reflections between two individual frames.
We introduce a general projection method to embrace the
reflection projecting from the reference images into the cur-
rent view by a three-step procedure. First, an offset vector
buffer is stored by selecting the best matched pixel with
respect to the current camera for each pixel. Second, the
reflectionmatching image is rendered by shifting each reflec-
tive pixel with the vector in the formerly generated buffer.
Finally, a common warping operation is used to warp the
reflection matching image into the current view. By using a
mesh-based pixelmapping technique, it can be easily decided

where the reflection color in the reference image can be pro-
jected or the value has to be re-computed.

Our method only depends on camera movement and sup-
ports concave and convex reflectors. It is conceptually simple
and can easily be integrated in most reflection ray tracing
techniques where ray tracing is a bottleneck of the render-
ing system and can be used for reflection rendering for a
variety of concave, convex and planar reflectors. It can pro-
duces reflection image with no obvious error, while greatly
reduces theworkloads of tracing reflecting rays by projecting
the reflections in reflection buffers. Thus, our method can be
used to generate a preview sequence in a scenewith reflective
objects by given a few key frames or be integrated in a client
device to synthesis reflections from streaming images from
a ray-tracer server.

The workload reduction and performance speed up of
our method comes at a cost of reflection rendering qual-
ity artifacts. The artifacts come through 1. the assumption
that distance function varies monotonously over reflective
surfaces and finally converges at the best matched pixel, 2.
insufficient geometry sampling in reference buffers and 3. the
disocclusion error due to motion parallax of reflected rays.
One limitation of our method is it cannot predict reflections
in scenes with moving objects. Our approach can efficiently
reconstruct the reflected objects by assuming the geome-
try’s position is static and use this static reflected position to
search optimal reflection point in image space. We can still
use our method as long as the movement of each reflected
object is provided. Another limitation is the width of efficient
reflection projection’s time window. Reflected rays vary dra-
matically with respect to cameramovement, and the reflected

123



528 N. Xie et al.

values of a reference image will thus have little correlation
with the new image rendered by a distant camera.Ourmethod
can handle this situation by assigning an invalid value to
these non-reflection temporal coherent relevant areas, and
our method degrades into a pure ray tracing method.

Our method can handle multi-reflections projection by
extending reflection buffers further to represent the geome-
try surfaces intersected by higher-order rays, and by applying
multi-TCRR passes, recursively. However, multi-reflections
are usually unnoticeable; therefore, our method focuses on
the approximating reflections by one-order reflected rays and
we ignore high-order reflections because they do not warrant
the additional cost.

Ourmethod demonstrates that projection techniques using
temporal coherence can generate not only view-independent
components, but also the view-dependent components. One
direction of our future work is to extent our work to
other view-dependent components like refraction and glossy
reflections. Another direction of our future work involves
detecting the fidelity of the projected reflections more pre-
cisely for eliminating the possible gaps between the true
reflections to the false predictions. Light weight ways of
reducing these artifacts such as a blurring scheme could be
used to implement a smooth transition from the reflection
re-compute area to the low-fidelity reflection approximate
area.
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