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Abstract

Fine-grained image recognition is challenging because discriminative clues are usually fragmented, whether from a single
image or multiple images. Despite their significant improvements, the majority of existing methods still focus on the
most discriminative parts from a single image, ignoring informative details in other regions and lacking consideration of
clues from other associated images. In this paper, we analyze the difficulties of fine-grained image recognition from a new
perspective and propose a transformer architecture with the peak suppression module and knowledge guidance module,
which respects the diversification of discriminative features in a single image and the aggregation of discriminative clues
among multiple images. Specifically, the peak suppression module first utilizes a linear projection to convert the input
image into sequential tokens. It then blocks the token based on the attention response generated by the transformer
encoder. This module penalizes the attention to the most discriminative parts in the feature learning process, therefore,
enhancing the information exploitation of the neglected regions. The knowledge guidance module compares the image-
based representation generated from the peak suppression module with the learnable knowledge embedding set to obtain
the knowledge response coefficients. Afterwards, it formalizes the knowledge learning as a classification problem using
response coefficients as the classification scores. Knowledge embeddings and image-based representations are updated
during training simultaneously so that the knowledge embedding includes a large number of discriminative clues for
different images of the same category. Finally, we incorporate the acquired knowledge embeddings into the image-based
representations as comprehensive representations, leading to significantly higher recognition performance. Extensive
evaluations on the six popular datasets demonstrate the advantage of the proposed method in performance. The source
code and models will be available online after the acceptance of the paper.
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1. Introduction

Aiming to distinguish the objects belonging to multi-
ple sub-categories of the same meta-category, fine-grained
image recognition has been one of the most fundamen-
tal problems in the computer vision and multimedia com-
munities [1, 2, 3, 4, 5]. It is essential for a wide range
of downstream applications such as rich image captioning
[6], image generation [7], machine teaching [8], fine-grained
image retrieval [9], food recognition [10, 11], and food rec-
ommendation [12].

Fine-grained image recognition is challenging due to
subtle inter-class differences and significant intra-class
variances. Most existing methods only consider the prob-
lem of fine-grained recognition from the perspective of ob-
taining the discriminative characteristics of a single image
but ignore the clues provided by multiple images. In order
to take the clues of multiple images into consideration, we
try to explain the difficulty of fine-grained image recogni-
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(a) (b) (c)

Figure 1: Some fine-grained bird images sampling from the CUB-
200-2011 dataset. (a) is Black Tern, both (b) and (c) are Long-
tailed Jaeger. Discriminative parts are annotated by red boxes. The
details in the red boxes of (a) and (b) are magnified next to the
image. Discriminative clues are distributed in multiple regions of
the image, and the clues of a single image are usually incomplete.

tion with a new perspective and attribute it to fragmented
discriminative clues.

The fragmentation here has two implications: (1) From
the perspective of a single image, discriminative clues ap-
pear in different local areas since the inter-class differences
could be subtle; As shown in Fig. 1 (a) and (b), the long-
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tailed jaeger is similar to the black tern overall, but the
beak of long-tailed jaeger is curved, and the beak of the
black tern is straight. This kind of discriminative part
is usually tiny and distributed in different image regions,
as shown in Figure 1 (c). (2) From the perspective of
multiple images, each image contains only a part of the
discriminative information about the category depending
on different poses, scales, and rotations, due to significant
intra-class variances. As shown in Fig. 1 (b) and (c), these
two pictures are long-tailed jaeger, the beak of the bird in
(c) is difficult to distinguish, and there are no bird claws in
(b). Therefore, the discriminative information contained
in each image is incomplete.

To find and aggregate fragmented clues is the key to
fine-grained image recognition. Despite their impressive
results, existing methods usually consider fine-grained im-
age recognition only from few regions, ignoring many in-
formative details in other regions and other associated im-
ages. For instance, if the beak of a specific bird is very
different from other birds, the model may pay much at-
tention to the beak of the bird while ignoring the claws
and tail of the bird. When this happens, the model could
easily make mistakes when the beak of the bird is not vis-
ible.

Given this challenge, we propose a Transformer with
Peak Suppression and Knowledge Guidance (TPSKG) for
fine-grained image recognition. The proposed Peak Sup-
pression (PS) module uses the transformer architecture to
integrate the local information and explores a training rou-
tine to increase the diversity of discriminative features.
This PS module is designed to obtain as many discrimina-
tive clues as possible from a single image. Simultaneously
the proposed Knowledge Guidance (KG) module incorpo-
rates the learnable knowledge embedding into the image-
based representation for a comprehensive representation.
This KG module is used to aggregate discriminative infor-
mation from multiple images.

Specifically, we are inspired by ViT [13] and use a trans-
former architecture to tackle the fine-grained image recog-
nition problems. The input image is reshaped into a patch
sequence without overlap and then linearly mapped to the
sequential tokens. The transformer encoder uses the self-
attention mechanism to integrate the information of the
different tokens to obtain a global representation. Instead
of integrating all the token information like the original
ViT, we deliberately remove the most discriminative to-
ken based on the value of the attention weight map in
training to penalize strongly discriminative learning and
enforce the network to pay attention to other neglected
informative areas for keeping the fine-grained representa-
tion diversity.

After that, we use a knowledge embedding set to explic-
itly express the discriminative clues of the same category
from different images and formalize the learning of knowl-
edge embedding as a classification task. The knowledge
guidance module measures the similarity of the knowledge
embeddings and image-based representations generated

(a) (b) (c)

Figure 2: The effects of the proposed approach for some samples from
the CUB-200-2011 and Stanford Dogs datasets. (a) is the original
fine-grained image, (c) and (b) are the attention weights obtained
from the vision transformer with and without the proposed method
(TPSKG). The parts of the proposed method that are significantly
different from the original method are annotated by red boxes.

from the peak suppression module to obtain the knowl-
edge response coefficients. We use the knowledge response
coefficients as the classification scores directly and use the
category label as ground truth to supervise the knowl-
edge learning. The image-based representations become
more discriminative through the joint training of fine-
grained classification and knowledge learning tasks, and
the knowledge embeddings are also concurrently updated
through iterations. The learning procedure of knowledge
embeddings covers the entire training dataset, therefore
these embeddings become the comprehensive representa-
tions containing various subtle and slight characteristics of
all categories. Finally, we obtain the knowledge-based rep-
resentations computed from the knowledge embedding set
along with the knowledge response coefficients, and inject
them into the image-based representations. The proposed
knowledge embedding learning and exploitation lead to a
significant boost for recognition performance.

To verify the effectiveness of our method, we conduct ex-
tensive experiments on the six popular benchmarks for the
fine-grained image recognition task. Quantitative experi-
mental results demonstrate that the proposed method can
achieve competitive performance compared to the state-
of-the-art approaches. As shown in Fig. 2, qualitative
experimental results demonstrate the advantages of our
method in covering more informative areas and increasing
the diversity of expression at the same time. The quanti-
tative analysis and visualization of knowledge embedding
also illustrate the effectiveness of category-related knowl-
edge embedding learning.

In summary, we make the following main contributions:

(1) We provide a new perspective that the difficulty of
fine-grained recognition lies in fragmented discriminative
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clues. This perspective helps consider not only multiple
regions from a single image but also multiple images.

(2) We propose a vision transformer architecture with
peak suppression and knowledge guidance for the fine-
grained image recognition task. Peak suppression effec-
tively increases the diversity of image representations via
aggregating the local features from multiple regions from
a single image. Knowledge guidance optimizes the final
representations with the knowledge embeddings learning
from multiple images.

(3) We formalize the knowledge learning as a classifi-
cation problem and directly use the similarity between
knowledge embeddings and image-based representations
as the classification score to update the knowledge em-
beddings related to the category.

(4) We conduct extensive quantitative and qualitative
experiments to demonstrate the effectiveness of the pro-
posed method, which achieves competitive performance
compared to the state-of-the-art approaches on six pub-
lic datasets.

The rest of this paper is organized as follows. Section
2 reviews the related works. Section 3 elaborates on the
proposed framework. Experimental results and analysis
are reported in Section 4. Finally, we conclude the paper
in Section 5.

2. Related Works

This section introduces the most related researches into
the following categories: the fine-grained image recogni-
tion task and the vision transformer architecture.

2.1. Fine-grained Image Recognition

There are two prevailing paradigms in the current re-
search in fine-grained image recognition. One is the local
identification, and the other is the global discrimination.

Local-identification approaches focus on locating the
discriminative semantic parts of fine-grained objects to
identify the subtle differences among different object cate-
gories and construct mid-level representations correspond-
ing to these parts for the final classification. Early works
[14, 15] used strong supervised mechanisms with part
bounding box annotations to learn localizing the discrim-
inative parts. However, the part annotation is time-
consuming. Recent researches [16, 17, 18, 19] focused on
weakly supervised recognition methods with only image-
level labels to obtain accurate part localization to solve
this problem. Some patch-based methods [20, 21, 22] first
initialize abundant region proposals and select the discrim-
inative parts based on a specific strategy. There are also
attention-based ways to localize the corresponding high
areas related to the image label, such as [23, 24, 25, 10].

Global-discrimination approaches generally learn the
embeddings using a specific distance metric so that sam-
ples from the same category can be pulled close to each
other while samples from different categories are pushed

apart. For example, a bilinear model is used in [26] to learn
the interacted feature of two independent CNNs, which
achieves remarkable fine-grained recognition performance.
However, the exceptionally high dimensionality of bilinear
features still makes it impractical for realistic applications.
Chen et al. [27] enforced the classification network to pay
more attention to discriminative regions for spotting the
differences by destructing and reconstructing the input im-
age. Sun et al. [28] masked the most salient features for
the input images to force the network to use more subtle
clues for its correct classification. Zhuang et al.[29] learned
a mutual feature vector to capture semantic differences in
the input image pair.

Unlike the methods described above, we consider the
discriminative but not the most significant part of a single
image, but also emphasize the discriminative information
aggregation in different images. Hence, we propose a vision
transformer with peak suppression and knowledge guid-
ance, which can effectively increase the richness of fine-
grained representations in a local area and effectively ag-
gregate patch features. Simultaneously, it emphasizes the
learning and utilization of the knowledge of distinguishing
characteristics between different image samples.

2.2. Vision Transformer

The transformer architecture by [30] is proposed to deal
with the sequential data in the field of natural language
processing [31, 32]. Inspired by the breakthroughs of trans-
former architectures in the field of natural language pro-
cessing, researchers have recently applied transformer to
computer vision tasks, such as image recognition [13, 33],
object detection [34, 35], segmentation [36], image super-
resolution [37]. For example, Cordonnier et al. [38] proved
that a multi-head self-attention layer with a sufficient num-
ber of heads is at least as expressive as any convolutional
layers. They extracted patches from the input image and
applied full self-attention on top. iGPT [39] applies trans-
formers to image pixels after reducing the image resolution
and color space. It is worth noting that the Vision Trans-
former (ViT) [13] is a pure transformer that performs well
on the image classification task when applied directly to
the sequences of image patches. Based on ViT, Touvron
et al.[33] transferred the model to the fine-grained visual
categorization and achieved competitive performance.

To sum up, the vision transformer maps group pixels
into a small number of visual tokens, representing a seman-
tic concept in the image. These visual tokens are used di-
rectly for image classification, with the transformers being
used to model the relationships among tokens. Our work
is inspired by ViT and adopts the same method as ViT to
build a transformer. Despite the efficiency of iGPT, ViT,
and DeiT, these works only fine-tune the model on the
fine-grained datasets directly to evaluate the effectiveness
of the model for transfer learning and ignore the character-
istics of the fine-grained image recognition task. Different
from the above methods, we consider the characteristics of
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the fine-grained image and focus on the specific recognition
task.

3. Framework

This section introduces the proposed framework, which
is a transformer architecture for the fine-grained recogni-
tion task. As shown in Fig. 3, this framework mainly con-
sists of two components, namely Peak Suppression (PS)
and Knowledge Guidance (KG). PS takes images as input
and outputs the suppressed image-based representations to
the KG module. The KG module takes the image-based
representations and learns the knowledge embeddings, fi-
nally uses the fusion representations for the recognition
task. Section 3.1 introduces PS and Section 3.2 details
KG.

3.1. Peak Suppression

Inspired by the effectiveness of the diversification block
on convolutional neural networks, we proposed the peak
suppression module on the transformer architecture to pay
more attention to the other informative parts and obtain
more diverse expressions by suppressing the most discrim-
inative regions. Different from the CNNs-based method of
directly operating feature maps using the category-specific
activation maps, the transformer-based method cannot
achieve the goal by directly removing the most significant
corresponding token in the last layer because all tokens
have interacted during the feedforward process in multi-
head attention layers. Therefore, we can only use the at-
tention map to backtrack to the input image space and
then mask salient image regions in the image space.

Formally, we follow the settings of [13] and use the ViT
as the backbone. Let x ∈ RH×W×C denotes a given train-
ing image where (H,W ) is the resolution of the image, C
is the number of channels. The image x is reshaped into a
sequence of flattened 2D patches xp ∈ RN×P 2×C , the res-
olution of each image patch is (P, P ), and N = HW/P 2 is
the resulting number of patches. These patches are con-
verted to D dimensions embedding xpE ∈ RN×D as input
tokens through a trainable linear projection. Attaching
the learnable embedding class token z00 , there are a total
of N + 1 tokens. Position embeddings Epos are added to
the patch embeddings Epos ∈ R(N+1)×D to retain the po-
sitional information. The transformer encoder takes the
z0 as input and outputs zL and the attention weight ML,
where L means the transformer encoder is composed of a
stack of L identical layers. Each layer consists of multi-
head self-attention (MSA) and MLP blocks. Layernorm
(LN) is applied before every block and residual connec-
tions after every block.

z0 = [xclass;x
1
pE;x2pE; ...;xNp E] + Epos,

z′l = MSA(LN(zl−1)) + zl−1, l = 1...L,

zl = MLP (LN(z′l)) + z′l, l = 1...L.

(1)

We use the Attention Rollout technique [40] to acquire
the attention map from the output token to the input
space. Given a transformer with L layers, we need to flow
the attention from all positions in the final layer L to all
positions in layer 1. At every transformer layer, we aver-
age attention weights at each layer over all heads and get
the weight matrix Ml that defines the attention value flows
from all tokens in the previous layer to all tokens in the l
layer. Considering that there are residual connections in
the backbone, we deal with them by adding the identity
matrix I to the attention matrices and re-normalize the
attention weights to keep the total attention in the range
of 0 to 1. Finally, we recursively multiply the weight ma-
trices of all layers.

M̃l =

{
(Ml + I)M̃l−1 if l > 1,

Ml + I ifl = 1.
(2)

In this equation, M̃l is attention rollout of the l layer,
Ml is raw attention of the l layer, and the multiplication
operation is matrix multiplication. The M̃L illustrates the
mixing of attention among tokens across all layers.

Let B ∈ RN+1 denote the binary suppressing mask for
the input tokens. Each element in mask B is in the domain
{0, 1}, where 0 indicates the corresponding location will
be suppressed while 1 means that no suppression will take
place. Note that the B0 is always 1 because it corresponds
to the class token.

After obtaining the attention map M̃L ∈ RN , we com-
pute the B by traversing the entire attention map and
finding the position of the largest response.

Bi =

{
0 ifM̃ i−1

L = max(M̃L)
1 otherwise.

(3)

where i ∈ {1, 2, ..., N}. In order to remove the influence of
peaky token, we remove it from the forward process.

ẑ0 = [xclass;x
1
pE;x2pE; ...;xNp E] ∗B + Epos, (4)

where ∗ denotes element-wise multiplication. After the
forward process, the transformer encoder outputs y as the
image-based representation.

ẑ′l = MSA(LN(ẑl−1)) + ẑl−1, l = 1...L,

ẑl = MLP (LN(ẑ′l)) + ẑ′l, l = 1...L.

y = LN(ẑ0L),

(5)

where ẑ0L denotes the class token vector of the output of
L layer transformer encoder after peak suppression. We
implement the remove of Equation (4) by setting −∞ to
the suppressed token vectors. After the softmax layer of
Equation (5), the responses of these tokens will be close
to 0.

To sum up, we suppress the peaky token based on the
attention maps in the training phase. By suppressing the
tokens, the network is forced to find the other informative
regions instead of the most discriminative regions in the
image. The increase of the feature diversity can improve
the performance of the network in the test phase.
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Figure 3: Overview of our framework. Here we visualize the case of peak suppression and knowledge guidance given a training batch with a
image and its corresponding label Yellow-breasted Chat. S(·) means the similarity function. Only the presentation label is used to predict in
testing.

3.2. Knowledge Guidance

After obtaining the diversified discriminative clues of a
single image, the knowledge guidance module fuses the in-
formation of multiple images to get a more comprehensive
feature representation. The knowledge guidance module
first learns the knowledge embeddings related to the cate-
gory. To this end, we propose a novel learning method that
abstracts the learning of knowledge embeddings as a clas-
sification problem and directly uses the similarity between
knowledge embeddings and image-based representations as
the classification score. Subsequently, the knowledge guid-
ance module injects the obtained knowledge embeddings
into the image-based representations to get a more com-
prehensive expression. Therefore, the knowledge guidance
module contains two tasks, one is knowledge learning, and
the other is knowledge exploiting. We first introduce the
knowledge learning task.

3.2.1. Knowledge Learning

To enforce the networks to learn the knowledge em-
bedding for each category, we treat the knowledge learn-
ing task as a classification task. Considering the multi-
class fine-grained image recognition task, let F = {fg}Gg=1

denotes the fine-grained label set containing all G fine-
grained labels and X = {xj}Jj=1 denotes the image train-
ing dataset containing the total J images. Through the
peak suppression module of transformer encoder, we can
acquire the representation set Y = {yj}Jj=1, y

j ∈ RD from
the training dataset. Randomly initializing a knowledge
embedding set of the D-dimension knowledge embedding

K = {kg}Gg=1, k
g ∈ RD, each kg means the knowledge em-

bedding of the category fg.
Given a image xj with the corresponding ground-truth

fine-grained label fg, the transformer encoder outputs its
representation yj ∈ RD. The knowledge embedding set
tries to distinguish which category this representation yj

belongs to by judging the similarity between this repre-
sentation yj and every knowledge embedding kg in the K.
We obtain a knowledge response coefficients rj ∈ RG.

rj = Softmax(S(yj ,K)), (6)

where S(·) is a similarity function. We have tried a vari-
ety of methods to calculate similarity, such as the neural
networks and element-wise multiplication, and the results
are not significantly different. In addition, the computa-
tional complexity of element-wise multiplication is much
smaller. Therefore, without loss of generality, the element-
wise multiplication is adopted in our experiments.

We then directly convert the knowledge response coeffi-
cients rj into one-hot for a supervised learning. We define
the knowledge learning loss as

Losskl = CrossEntropy(Onehot(rj), fg). (7)

We use Losskl to supervise knowledge learning pro-
cessing to update the knowledge embedding set. The
knowledge embeddings have gradually become the com-
mon ground of different instances of the same category
during the training procedure. As the representations be-
come more discriminative in training, the knowledge em-
beddings become better to express the category. Further-
more, in this training procedure, the knowledge learning
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task considers the representations of all training images,
making the knowledge embeddings more comprehensive in
the expression of corresponding categories.

3.2.2. Knowledge Exploiting

In order to effectively use knowledge, we first obtain a
knowledge-based representation based on the knowledge
response coefficients and the knowledge embeddings. The
knowledge-based representation δj is computed as

δj =
∑
g∈G

rjkg. (8)

This knowledge-based representation includes a sum-
mary of the fine-grained features of different instances in
the same category and a summary of the differences in
different categories.

We use the knowledge to guide the classification by in-
jecting the knowledge-based representation into the final
fusion fine-grained representation:

uj = FC(LN(yj + δj)), (9)

where FC is the fully connective layer.

We define a representation learning loss to supervise the
training to obtain the fusion representation:

Lossrep = CrossEntropy(uj , fg). (10)

We optimize the knowledge learning task and the knowl-
edge exploiting task simultaneously so that the image rep-
resentation and the knowledge can be updated iteratively
and promote each other during the training process.

Thus, the total loss function of the whole network can
be defined as

Loss = Losskl + µ× Lossrep, (11)

where µ is a hyperparameter used to adjust the different
emphasis of the two tasks.

During the training, our method explicitly obtains the
knowledge embeddings of the different fine-grained cate-
gories. These knowledge embeddings are distinguishable
and comprehensive, so we insert them into the image-based
representations to increase the comprehensiveness of fea-
tures for the fine-grained recognition task.

In summary, the peak suppression module aims to con-
sider more regions in a single image to obtain more di-
verse expressions. Based on the peak suppression mod-
ule, the knowledge guidance module aims to extract and
exploit the category-related embeddings based on the ex-
pression of multiple images. Therefore, these two modules
are complementary in aggregating fragmented information
at different levels. In the next Section 4, we conduct suffi-
cient experiments to prove the effectiveness of the proposed
method.

4. Experiments

4.1. Experimental Setup

4.1.1. Datasets

We conduct our experiments on six fine-grained image
recognition datasets, including two publicly available bird
datasets CUB-200-2011 [41] and NABirds [42], one flower
dataset Oxford 102 Flowers [43], one dog dataset Stanford
Dogs [44], and two food datasets ISIA Food-200 [10] and
ISIA Food-500 [45]. The detailed statistics about these six
datasets including class numbers and train/test distribu-
tions are summarized in Table 1.

Table 1: Fine-grained image dataset statistics.

Dataset # Class # Training # Testing
CUB-200-2011 [41] 200 5,994 5,794
Oxford Flowers [43] 102 1,020 6,149
Stanford Dogs [44] 120 12,000 8,580

NABirds [42] 555 23,929 24,633
ISIA Food-200 [10] 200 118,210 59,287
ISIA Food-500 [45] 500 239,379 120,143

4.1.2. Implementation Details and Comparison
Methods

Our method is implemented on the Pytorch platform
with four Nvidia V100 GPUs. The input image size is 448
× 448 as most state-of-the-art fine-grained image recogni-
tion approaches. By following the settings of NTS-NET
[20], we use data augmentations, including random crop-
ping and horizontal flipping during the training proce-
dure. Only the center cropping is involved in inference.
The model is trained with the stochastic gradient descent
(SGD) with a batch size of 8 and momentum of 0.9 for all
datasets. The learning rate is set to 3e-2 initially, and the
schedule applies a cosine decay function to an optimizer
step. In all our experiments, we use ViT-B-16 pre-trained
on ImageNet21k as the backbone. For all experiments,
we adopt the top-1 accuracy as the evaluation metric. To
demonstrate the advantages of our model, we list the some
methods for comparisons.

• DVAN [4]: Diversified visual attention network which
relieves the dependency on supervised information.

• MaxEnt [46]: Maximum entropy approach which pro-
vides a training routine to maximize the entropy of
the output probability distributions.

• NTS-NET [20]: Navigator-teacher-scrutinizer net-
work which finds consistent informative regions
through multi-agent cooperation.

• Cross-X [47]: Multi-scale feature learning with ex-
ploiting the relationships between different images
and layers.

• GHNS [48]: A framework that generates features of
hard negative samples.
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• CSC-Net [49]: Category-specific semantic coherency
network which semantically aligns the discriminative
regions of the same subcategory.

• CDL [50]: Correlation-guided discriminative learning
model which mines and exploits the discriminative po-
tentials of correlations.

• MLA-CNN [51]: Multi-level attention model which
uses the neural activations to generate multi-scale re-
gions which are helpful for the fine-grained categoriza-
tion.

• BiM-PMA [52]: Progressive mask attention model by
leveraging both visual and language modalities.

• CIN [53]: Channel interaction network models
channel-wise interplay within an image and across im-
ages.

• DB [28]: End-to-end network with a diversification
block to use more subtle clues.

• FDL [22]: Filtration and distillation learning model
with region proposing and feature learning.

• PMG [54]: Progressive multi-granularity method ex-
ploiting information based on the smaller granularity
information found at the last step and the previous
stage.

• API-NET [29]: Pairwise interaction network which
can progressively recognize a pair of images by inter-
action.

• CPM [17]: Complementary part model in a weakly
supervised manner to retrieve information suppressed
by dominant object parts detected by CNNs.

• GaRD [55]: Graph-based relation discovery approach
to grasp the stronger contextual details.

• SnapMix [56]: Semantically proportional mixing
which exploits CAM to lessen the label noise in aug-
menting fine-grained data.

• HGNet [57]: Hierarchical gate network to exploit the
interconnection among hierarchical categories.

• SCAPNet [58]: Scale-consistent attention part net-
work to guide part selection across multi-scales and
keep the selection scale consistent.

• CTF-CapsNet [59]: Coarse-to-fine capsule network to
shape an increasingly specialized description.

• MSEC [60]: Multi-Scale Erasure and Confusion which
realizes confusion at different scales in images and
sub-regions.

4.2. Ablation Analysis

In this section, we conduct a series of ablation studies
on the CUB-200-2011, Stanford Dog, Oxford 102 Flow-
ers, NABirds, ISIA Food-200, and ISIA Food-500 datasets
to better understand the designation of the proposed TP-
SKG. We use the performance of the original ViT-B-16 as
the ablation baseline.

4.2.1. Impact of different components

To investigate the contribution of each component in
the proposed method, we omit different components of
TPSKG and report the corresponding top-1 recognition
accuracy. From the results reported in Table 2, we can
draw the following conclusions:

(1) The recognition accuracy on the CUB-200-2011
dataset drops from 91.3% to 91.0% and 90.9% when omit-
ting the PS module and the KG module respectively, which
demonstrates the effectiveness of both of the components
for the fine-grained image recognition task. The experi-
mental results on the other five datasets also have similar
trends to the results of the CUB-200-2011 dataset, indi-
cating that both the PS module and the KG module can
effectively improve the recognition performance.

(2) The network with only the PS module improves
the recognition accuracy of baseline by 0.5% (90.4% vs.
90.9%) on CUB-200-2011 dataset, shows that details other
than the most significant part are helpful for the fine-
grained image recognition task. At the same time, the
network with the KG module improves 0.6% (90.4% vs.
91.0%) on the CUB-200-2011 dataset, showing that inte-
grating the discriminative information of multiple images
can effectively improve the recognition performance of the
network. This result is consistent with our analysis of
discriminative information fragmentation in fine-grained
image recognition tasks.

(3) The PS module improves the recognition accuracy
of baseline by 1.3% (59.9% vs. 61.2%) and the KG mod-
ule improves the recognition accuracy of baseline by 2.1%
(59.9% vs. 62.0%) on the ISIA Food-500 dataset, the com-
bination of these two modules can improve the recognition
accuracy of baseline by 5.5% (59.9% vs. 65.4%). This ex-
perimental phenomenon shows that the PS module and
the KG module are complementary and can promote each
other. The more diverse the expression obtained by the
peak suppression module, the stronger the expression abil-
ity of embedding learned by the knowledge guidance mod-
ule.

4.2.2. Visualizations of knowledge embedding

The knowledge embedding is a category-related feature
representation learning with the similarity as the classifi-
cation score directly. The embedding becomes the most
similar to the feature expression in the corresponding cat-
egory and the most dissimilar to the feature expression in
other categories. As shown in Fig. 4: (1) The knowledge-
based representation and the image-based representation
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Table 2: Ablation results of the proposed TPSKG on the fine-grained image datasets.

Model CUB-200-2011 Stanford Dog Oxford Flowers NABirds ISIA Food-200 ISIA Food-500
ViT-B-16 90.4 91.4 99.2 89.6 67.4 59.9

w/o Peak Suppression 91.0 91.8 99.3 89.9 69.3 62.0
w/o Knowledge Guidance 90.9 91.8 99.3 89.8 68.3 61.2

All TPSKG 91.3 92.5 99.5 90.1 69.5 65.4

Figure 4: The t-SNE visualizations of image representations and
knowledge embedding of 50 sample categories from the CUB-200-
2011 dataset. Each dot stands for an image representation, and each
star represents the knowledge embedding of a category. The color
indicates the categories.

are in the same subspace, which is convenient for feature
fusion. (2) These two representations of the same category
are close in the subspace, indicating that knowledge-based
representation can express category-related information.
(3) The knowledge-based representation is separable in the
subspace, so it is helpful for recognition tasks.

4.2.3. Choice of µ:

Since Equation 11 requires selecting a hyperparameter
µ, it is essential to study the influence of classification
performance on the choice of µ. We conduct this exper-
iment for four different µ on the CUB-200-2011 dataset.
As shown in Fig. 5, the experimental results show that
(1) The performance is relatively robust to the choice of µ
generally. (2) The model performs better when the weight
of Lossrep is slightly larger than Losskl. The probable
reason is that the learning of knowledge relies on the com-
bined effect of representation and label. A slightly larger
weight of Lossrep allows the network to learn the discrim-
inative feature representation preferentially. Because the
performance of the model is not sensitive to the choice of
µ, the weighting coefficient in Equation 11 is empirically
chosen to be µ=2 in all the following experiments.
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Figure 5: Performance on the choice of µ on the CUB-200-2011
dataset.

4.2.4. Computation complexity

Since the computation and memory cost can be heavy
for global attention in vision transformer architecture, we
compare the proposed modules to the original ViT, both
in terms of the number of parameters and MACs (Mul-
tiply–Accumulate Operations). As shown in Table 3, the
proposed KG module achieves better performance com-
pared to the original ViT without significantly increas-
ing computational complexity. Although the proposed
PS module increases the computational complexity in the
training phase, it does not increase the computational
complexity at all in the inference phase, and at the same
time improves the recognition performance. The number
of parameters has not increased significantly.

Table 3: Comparison results on Cub-200-2011 dataset.

Models
Input
Size

Params
(M)

Training
MACs(G)

Inference
MACs(G)

Accuracy
(%)

ViT-B-16 448×448 86.4 67.14 67.14 90.4
ViT w/ PS 448×448 86.4 134.4 67.14 90.9
ViT w/ KG 448×448 86.6 67.14 67.14 91.0

TPSKG 448×448 86.6 134.4 67.14 91.3

4.3. Comparison with State-of-the-art

For further verification for the TPSKG, we compare our
method to the state-of-the-art methods on the six publicly
available fine-grained datasets in this section.

4.3.1. CUB-200-2011

We compare the proposed method against many state-
of-the-art fine-grained recognition models on CUB-200-
2011, as shown in Table 4. The results show the following
conclusions.

(1) Overall, the proposed TPSKG performs better than
the state-of-the-art fine-grained methods, including the
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global-discrimination approaches methods MaxEnt [46]
and DB [28], and the part-based methods NTS-NET [20]
and CPM [17].

(2) Images with higher resolutions usually contain richer
information and subtle details that are important for the
fine-grained image recognition task. According to the lit-
erature [61], higher resolution input images will produce
better performance generally. Our method uses a smaller
resolution than PMG [54], API-NET [29], and CPM [17]
but achieves a better performance. At the same time, our
method is possible to perform better with higher resolu-
tion.

(3) CPM [17] has good performance using the stacked
BiLSTMs to integrate the patch features. The perfor-
mance of the original ViT method is equivalent to the
CPM, which proves the effectiveness of the transformer
in feature aggregation and its potential in the fine-grained
recognition task.

(4) Although the original ViT model has satisfactory
performance, we have improved it by 0.9%.

(5) Both CIN [53] and API-NET [29] have achieved good
results based on the contrastive learning mechanism. It is
worth noting that the improvement from our framework
is orthogonal to those works, so the proposed TPSKG can
also benefit from these methods.

Table 4: Comparison results on CUB-200-2011 dataset.
Method Backbone Resolution Accuracy(%)

MaxEnt [46] DenseNet-161 - 84.9
MLA-CNN [51] VGG-19 448 × 448 85.7

DVAN [4] VGG-16 224 × 224 87.1
NTS-NET [20] ResNet-50 448 × 448 87.5
Cross-X [47] ResNet-50 448 × 448 87.7
HGNet [57] ResNet-50 448 × 448 87.9

CIN [53] ResNet-101 448 × 448 88.1
MSEC [60] ResNet-50 448 × 448 88.3
CDL [50] ResNet-50 448 × 448 88.4
DB [28] ResNet-50 448 × 448 88.6

HGNet [57] ResNet-50 448 × 448 88.7
CTF-CapsNet [59] ResNet-50 448 × 448 88.9

GHNS [48] ResNet-50 448 × 448 89.1
FDL [22] DenseNet-161 448 × 448 89.1

CSC-Net [49] ResNet-50 224 × 224 89.2
SCAPNet [58] ResNet-50 224 × 224 89.5

PMG [54] ResNet-50 550 × 550 89.6
GaRD [55] ResNet-50 448 × 448 89.6

SnapMix [56] ResNet-101 448 × 448 89.6
CTF-CapsNet [59] ResNet-50 448 × 448 89.7

API-NET [29] DenseNet-161 512 × 512 90.0
CPM [17] GoogLeNet over 800 90.4

ViT-ResNet-50 ViT&ResNet-50 448 × 448 89.2
ViT [13] ViT-B-16 448 × 448 90.4
TPSKG ViT-B-16 448 × 448 91.3

4.3.2. Stanford Dog

As can be seen from Table 5, our method shows more
performance improvement on the Stanford Dog dataset,
which is 2.2% higher than the current state-of-the-art
method API-NET [29] without using the contrastive learn-
ing mechanism and the high-resolution input. It is worth

noting that the performance of the original ViT also ex-
ceeds API-NET by 1.1%, which reflects that the trans-
former architecture can be well migrated to fine-grained
recognition task.

Table 5: Comparison results on Stanford Dog dataset.

Method Backbone Resolution Accuracy(%)
DVAN [4] VGG-16 224 × 224 81.5

MaxEnt [46] DenseNet-161 - 83.6
PC-CNN [62] DenseNet-161 224 × 224 83.8

FDL [22] DenseNet-161 448 × 448 84.9
MSEC [60] ResNet-50 448 × 448 85.6

MLA-CNN [51] VGG-19 448 × 448 86.8
DB [28] ResNet-50 448 × 448 87.7

Cross-X [47] ResNet-50 448 × 448 88.9
API-NET [29] DenseNet-161 512 × 512 90.3
ViT-ResNet-50 ViT&ResNet-50 448 × 448 87.7

ViT [13] ViT-B-16 448 × 448 91.4
TPSKG ViT-B-16 448 × 448 92.5

4.3.3. Oxford 102 Flowers

Unlike BiM-PMA [52], which uses all 2040 images in
the training set and validation set for training, we follow
the settings of PC-CNN [62] and PBC [63] and only use
1020 images in training set for training to ensure a rel-
atively fair comparison. As can be seen from Table 6,
although using fewer images, our method still achieves a
2.1% performance improvement compared to BiM-PMA.
At the same time, our method still improves the recog-
nition performance when the recognition performance of
ViT is excellent.

Table 6: Comparison results on Oxford 102 Flowers dataset.

Method Backbone Resolution Accuracy(%)
PC-CNN [62] DenseNet-161 224 × 224 93.6

PBC [63] GoogleNet 224 × 224 96.1
BiM-PMA [52] VGG-16 448 × 448 97.4
ViT-ResNet-50 ViT&ResNet-50 448 × 448 98.5

ViT [13] ViT-B-16 448 × 448 99.2
TPSKG ViT-B-16 448 × 448 99.5

4.3.4. NABirds

The NABirds dataset is a larger fine-grained dataset
than the CUB-200-2011 dataset containing 48,562 North
American bird images. Many methods with complex op-
erations are not easy to experiment on a data set of this
order of magnitude. If an image generates thousands of
proposals, it means that tens of millions of proposals need
to be processed. Table 7 reports the performance of sev-
eral methods on the NABirds dataset. DSTL [61] uses
the transfer learning strategy for the fine-grained image
recognition task consisting of more than one dataset. The
result of our method trained on a separate dataset exceeds
DSTL by 2.2% in accuracy.
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Table 7: Comparison results on NABirds dataset.

Method Backbone Resolution Accuracy(%)
PC-CNN [62] DenseNet-161 224 × 224 82.8
MaxEnt [46] DenseNet-161 - 83.0
Cross-X [47] ResNet-50 448 × 448 86.4
HGNet [57] ResNet-50 448 × 448 86.4
DSTL [61] Inception-v3 560 × 560 87.9
GaRD [55] ResNet-50 448 × 448 88.0

ViT-ResNet-50 ViT&ResNet-50 448 × 448 86.7
ViT [13] ViT-B-16 448 × 448 89.6
TPSKG ViT-B-16 448 × 448 90.1

4.3.5. ISIA Food-200

In order to further verify the effectiveness and explore
the scope of application of our method, we explored the
food recognition task on the ISIA Food-200 dataset. Un-
like other fine-grained objects, many types of food are non-
rigid and lack a fixed spatial structure and semantic pat-
tern. Therefore, it is challenging to capture specific seman-
tic information from food images. Our method attempts
to increase the diversity of representations to cover more
distinguished areas, which is more effective for non-rigid
objects. Simultaneously, our method injects the extracted
knowledge into the image-based representation so that a
more comprehensive understanding of food categories can
be used in the recognition task.

Table 8 reports the performance of several methods on
the ISIA Food-200 dataset. The ViT is also mediocre on
this task. IG-CMAN [10] is a patch-based method sequen-
tially localizing multiple informative image regions with
multi-scale from category level to ingredient-level guidance
in a coarse-to-fine manner. Our method achieves the best
69.5% without using the multi-scale strategy and outper-
forms the state-of-the-art method IG-CMAN by 2.0% in
accuracy. This result proves that our method has a more
significant performance improvement in complex recogni-
tion problems.

Table 8: Comparison results on ISIA Food-200 dataset.

Method Backbone Resolution Accuracy(%)
ResNet-152 ResNet-152 224 × 224 61.1

DenseNet-161 DenseNet-161 224 × 224 62.6
IG-CMAN [10] DenseNet-161 224 × 224 67.5
ViT-ResNet-50 ViT&ResNet-50 448 × 448 62.5

ViT [13] ViT-B-16 448 × 448 67.4
TPSKG ViT-B-16 448 × 448 69.5

4.3.6. ISIA Food-500

The ISIA Food-500 is a more comprehensive food
dataset than the ISIA Food-200 with a larger data volume
and higher diversity. We evaluated the proposed TPSKG
against different fine-grained methods in Table 9. The per-
formance of ViT-ResNet-50 and ViT show a pronounced
decline. The possible reason is that the volume and com-
plexity of the ISIA Food-500 dataset are much higher than
that of the ISIA Food-200 dataset. This increase in com-

plexity makes the impact of the loss of local region seman-
tics more significant. It can also be seen that the pro-
posed method exceeds the original ViT significantly, with
a gain of 5.5% in accuracy. When the performance of the
original ViT is poor, our method still achieves competi-
tive performance compared to the state-of-the-art method,
which proves that our method does not rely heavily on the
performance of ViT. The proposed method obtains bet-
ter accuracy than the SGLANet without a complicated
multi-scale mechanism and spatial-channel attention. We
will try to leverage the multi-scale information to improve
performance in future work.

Table 9: Comparison results on ISIA Food-500 dataset.

Method Backbone Resolution Accuracy(%)
ResNet-152 ResNet-152 224 × 224 57.0

WRN-50 [64] WRN-50 224 × 224 60.1
WS-DAN [65] Inception-v3 299 × 299 60.7
NAS-NET [66] ResNet-152 331 × 331 60.7
NTS-NET [20] ResNet-152 448 × 448 63.7

SENet-154 SENet-154 224 × 224 63.8
DCL [27] ResNet-152 448 × 448 64.1

SGLANet [45] SENet-154 224 × 224 64.7
ViT-ResNet-50 ViT&ResNet-50 448 × 448 52.7

ViT [13] ViT-B-16 448 × 448 59.9
TPSKG ViT-B-16 448 × 448 65.4

4.3.7. Overall

We summarize the results of all datasets to obtain an
overall understanding of the proposed method. We can
find that (1) The recognition results of the different meth-
ods for the six different datasets show a very high degree
of correspondence, indicating the strong reproducibility.
(2) The performance of the hybrid model directly gen-
erated by the simple combination of ViT and ResNet-50
generally performs poorly on fine-grained image recogni-
tion task and even has performance degradation compared
to the ViT model. A possible explanation for these re-
sults may be the lack of adequate semantic information
in small regions. (3) The ViT model is generally suit-
able for simple fine-grained recognition tasks and obtains
close to state-of-the-art results on multiple datasets, but it
does not perform well for more complex food recognition
tasks. (4) The proposed PS module and KG module have
effectively improved the recognition performance, and the
proposed method has achieved very superior performance
on all datasets. (5) The KG module improves the model
performance more significantly than the PS module. The
possible explanation for this might be that the benefits of
integrating discriminative information in multiple images
are more significant than the coverage of more discrimina-
tive information areas in one single image.

4.4. Qualitative Visualization

In order to show the effectiveness of the method more
intuitively, we visualize the attention maps of the original
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CUB-200-2011 Stanford Dog ISIA Food-200 ISIA Food-500NABirdsOxford Flowers

Figure 6: The attention map comparison between our method and the baseline in different datasets. Top to below: original image, attention
map of the ViT, attention map of our method. The yellow means high weights and the blue means relatively low weights.
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Figure 7: The t-SNE visualization of fine-grained image feature representations of (top row) before injecting the knowledge embedding,
(bottom row) after injecting the knowledge embedding on the six fine-grained datasets. Each color represents a different class. The upper
right corner shows the accuracy of the corresponding method.

ViT and TPSKG models for sample images from six differ-
ent datasets. As shown in Fig. 6, we find that although the
original ViT can also perform localization and recognition,
our method is better in both aspects. The attention map
of the proposed TPSKG can not only locate the essential
parts well but also cover more discriminative areas, which
shows that the method is more robust than the original
ViT. For the CUB-200-2011, Stanford Dog, Oxford Flow-
ers and NABirds datasets with relatively simple scenes,
features without the diversity can complete the recogni-
tion task. For relatively complex food recognition tasks
on the ISIA Food-200 and ISIA Food-500 datasets, the
diversity of features is more important, and our method
has improved more obviously, which is consistent with the
results of quantitative analysis.

To visually analyze the influence of the knowledge guid-
ance module, we visualize the feature representations be-
fore/after injecting the knowledge embedding by employ-
ing t-SNE, on the six fine-grained image datasets as shown

in Fig. 7. The visualized data includes all test set im-
ages of CUB-200-2011, Stanford Dogs, Oxford Flowers,
NAbirds, ISIA Food-200 datasets and 50 sample categories
from the ISIA Food-500 dataset due to excessive data vol-
ume. Since the classification performance of the first four
datasets is very high, the visualized images are not much
different. But the latter two more complex food recog-
nition datasets show significant differences. The visual-
ization results of food recognition datasets in this figure
show obvious intra-class clustering. This proves that the
proposed KG module has a strong intra-class aggregation
ability. Although the t-SNE method cannot prove the
method’s ability for the recognition task, it can be seen
from the local structure that our method has a more vital
ability to aggregate features within the class. This inves-
tigation confirms that feature representations will get into
more separable clusters after injecting the category-related
knowledge embedding.

In addition, we further show the confusion matrix of our
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Figure 8: Confusion matrix of our method on the (a) CUB-200-2011 and (b) ISIA Food-200 datasets. Some instances of low recognition rate
categories are annotated by red boxes.

method on the CUB-200-2011 and ISIA Food-200 datasets
in Fig. 8, where the vertical axis shows the ground-truth
classes, and the horizontal axis shows the predicted classes.
Yellower colors indicate better performance. We can see
that our method still does not provide perfect performance
for some bird and food categories. We enlarge specific re-
gions to highlight the misclassified results and show some
samples with low recognition rates. As shown in Fig. 8 (a),
some birds of the same meta-category are extremely dif-
ficult to distinguish, such as California Gull and Western
Gull, Artic Tern and Common Tern. There are also images
with similar poses that cannot be recognized well, such as
Olive Sided Flycatcher and Wester Wood Pewee, requir-
ing further study and exploration. From Fig. 8 (b) we can
see that these food categories are very similar in visual
appearances, such as Chow mein, Mie Goreng, and Fried
noodles. Even humans cannot easily distinguish these food
categories based on images. Some food categories have the
same ingredients and different cooking techniques, which
are difficult to distinguish, such as pork knuckle and the
Schweinshaxe. Many types of food are difficult to classify
based on images alone. A possible solution is to com-
bine multiple media formats of information for the recog-
nition task, such as ingredient lists and cooking processes.
The transformer architecture has promising applications in
multimedia, including the visual field and the NLP field,
and provides the possibility for a unified framework.

5. Conclusion

Fine-grained image recognition is an interesting and fun-
damental topic. In this paper, we investigate the prob-
lem of fine-grained image recognition from the perspective
of fragmented information integration. Furthermore, we
present a transformer with peak suppression and knowl-
edge guidance (TPSKG) for the fine-grained image recog-
nition task. Our method learns the diverse fine-grained
representations by the peak suppression module penalizing
the most discriminative parts. It then learns the knowl-
edge embedding including a large number of discriminative
clues for different images of the same category, and injects
them into fine-grained representations leading to signifi-
cantly higher recognition performance. The proposed net-
work can be trained end-to-end in one stage, requiring no
bounding box/part annotations. Qualitative and quantita-
tive evaluations on six public fine-grained datasets demon-
strate that the proposed TPSKG can achieve competitive
performance compared to the state-of-the-art approaches.
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