
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, JUNE 2024 1

GaussianHand: Real-time 3D Gaussian Rendering
for Hand Avatar Animation

Lizhi Zhao, Xuequan Lu, Runze Fan, Sio Kei Im, Lili Wang

Abstract—Rendering animatable and realistic hand avatars
is pivotal for enhancing user experiences in human-centered
AR/VR applications. While recent initiatives have utilized neural
radiance fields to forge hand avatars with lifelike appearances,
these methods are often hindered by high computational demands
and the necessity for extensive training views. In this paper, we
introduce GaussianHand, the first Gaussian-based real-time 3D
rendering approach that enables efficient free-view and free-
pose hand avatar animation from sparse view images. Our
approach encompasses two key innovations. We first propose
Hand Gaussian Blend Shapes that effectively models hand surface
geometry while ensuring consistent appearance across various
poses. Secondly, we introduce the Neural Residual Skeleton,
equipped with Residual Skinning Weights, designed to rectify
inaccuracies involved in Linear Blend Skinning deformations due
to geometry offsets. Experiments demonstrate that our method
not only achieves far more realistic rendering quality with as few
as 5 or 20 training views, compared to the 139 views required
by existing methods, but also excels in efficiency, achieving up to
125 frames per second for real-time rendering and remarkably
surpassing recent methods.

Index Terms—Virtual Reality, Real-time Rendering, 3D Gaus-
sian Splatting, Hand Avatar Animation

I. INTRODUCTION

ADVANCEMENTS in AR/VR technologies are mixing
the humans’ physical and computers’ virtual worlds [2]–

[6]. Hands are crucial for creating immersive human-computer
interaction experiences [7], [8]. Thus, rendering and animating
realistic hand avatars from motion capture images is essential
for human-centered AR/VR applications [9]–[13].

Recent methods for constructing animatable hand avatars
with realistic appearance fall into two categories: mesh-
based and neural radiance field (NeRF)-based. Mesh-based
approaches reconstruct mesh geometry and physical-aware
lighting maps for photorealistic rendering [10], [11]. In con-
trast, NeRF-based hand avatars use implicit radiance field
representations [14] to create articulated, animatable radiance
fields for free-view rendering [1], [15]–[17].

In addition to these two types of methods, the recent
breakthrough in rendering achieved by Gaussian Splatting
[18], [19] provides researchers with a new representation. Hu
et al. presents GaussianAvatar [20] to create animatable human
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avatars represented by 3D Gaussians [18]. The method initial-
izes 3D Gaussians on the canonical SMPL surface [21] and
assigns each Gaussian a static skinning weight by interpolating
predefined SMPL skinning weights for pose deformation. The
authors then use a dynamic appearance network in the 2D
UV space of the posed SMPL to extract pose-dependent
appearance features. They use multi-layer perceptrons (MLP)
to predict the properties of each canonical 3D Gaussian,
including position offset, scale, and color. The position offsets
optimize Gaussians from the initial SMPL surface to the
clothed surface. These offset canonical 3D Gaussians are then
deformed to the posed space by linear blend skinning (LBS)
[21] for free-view rendering.

Modeling human hands presents distinct challenges. Though
GaussianAvatar achieves promising results for human avatar
rendering, directly applying it to hand avatar faces two major
problems. 1) GaussianAvatar does not enforce geometric con-
sistency between the same body part across different poses.
Hand geometry shows both pose-dependent variations and
pose-independent consistency. The pose-dependent geomet-
ric features like hand wrinkle depressions and blood vessel
bulges dynamically deform with various poses, leading to
unsmooth surfaces and thus affecting hand appearance. On the
other hand, certain aspects of hand geometry exhibit a pose-
independent consistency, such as the positions of wrinkles
and vessels, the shapes of fingers and nails, and so on. Un-
fortunately, though GaussianAvatar achieves pose-dependent
geometric modeling, it does not account for pose-independent
consistency, which is crucial for achieving realistic and stable
hand rendering. 2) GaussianAvatar lacks accuracy for pose
deformation. GaussianAvatar uses LBS for deformation. The
LBS skinning weights assume that the unposed canonical
Gaussians lie on the SMPL surface. Nevertheless, during
optimization, the unposed Gaussians offset from the SMPL
surface. This offset results in a misalignment between Gaus-
sians and skinning weights, leading to less accurate pose
deformation and reducing the fidelity of posed rendering
results.

In this paper, we propose GaussianHand, the first real-time
3D Gaussian rendering approach for both efficient free-view
and free-pose hand avatar animation from sparse view images,
achieving realistic and consistent hand appearance rendering
and accurate hand pose deformation. Our method involves two
key components. First, we introduce the novel Hand Gaussian
Blend Shapes (HGBS) to attain position offsets that not only
accommodate pose-dependent geometric variations but also
ensure geometry consistency of hand across poses. Our
HGBS consists of pose-independent Gaussian shape basis and
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Fig. 1. Left: Given an RGB image of the user input casual driving pose out of the training set, our GaussianHand can animate the trained hand avatar
with the input pose, while keeping the hand avatar’s original realistic appearance details. Our GaussianHand can be rendered in 125 FPS with free-view and
free-pose capabilities. Right: Comparison of our rendering results under 20 training views with LiveHand [1] under 139 training views. Our method achieves
more realistic and natural rendering quality with significantly fewer training views, especially for the clear appearance of wrinkles, nails, and blood vessels.

pose-dependent blend coefficients. Linearly blending the two
yields the linearly related position offset across poses. Second,
we propose the novel Neural Residual Skeleton (NRS) and
Residual Skinning Weights (RSW) to rectify the inaccurate
pose deformation. We devise a skeleton regressor to regress the
NRS from the HGBS position offset. The NRS, along with the
RSW, acts as a residual term for LBS, rectifying the predefined
skinning weights to the offset Gaussians surface.

We compare our GaussianHand with state-of-the-art (SOTA)
methods HumanNeRF [22], HandAvatar [15], LiveHand [1] on
the InterHand2.6M dataset [23], and HARP [10] on the Hand
Appearance Dataset. The rendering results of our method are
closer to the ground truth (GT) in both datasets. In the case of
multi-view training, compared to the LiveHand of the highest
rendering quality (which employs 139 training views) for the
average results of 3 evaluation sequences, our method reduces
9.6% in Learned Perceptual Image Patch Similarity (LPIPS)
[24] and improves 2.7%, 6.0% in Peak Signal-to-Noise Ratio
(PSNR) [25] and Structural Similarity Index Measure (SSIM)
[26], respectively, with only 20 training views. When reducing
the training views of our method to 5, our PSNR and SSIM are
still 1.8%, 5.7% higher than the LiveHand using 139 training
views. Figure 1 shows a comparison of the rendering results
for a user input driving pose out of the training set between
our method and the recent SOTA LiveHand method. This
improvement is especially notable in the detailed and clear
appearance of wrinkles, nails, and blood vessels. In monocular
view training, our GaussianHand outperforms HARP [10]
by 78.1%, 29, 4%, and 5.5% for LPIPS, PSNR, and SSIM,
respectively. In terms of efficiency, the rendering speed of our
GaussianHand is about 125 frames per second (FPS), which
is 25 FPS faster than the LiveHand.

To summarize, our contributions are as follows:
• We introduce GaussianHand, a new real-time 3D Gaus-

sian rendering technique for both free-pose and free-
view hand avatar animation from sparse view images.
It achieves realistic hand detail rendering and accurate
hand pose deformation, especially for nails, veins, and

wrinkles.
• We design the novel Hand Gaussian Blend Shapes, in-

cluding the pose-independent Gaussian shape basis and
pose-dependent blend coefficients, to capture the hand
geometric features and ensure consistency across different
hand poses.

• We propose the novel Neural Residual Skeleton with
Residual Skinning Weights to rectify inaccurate LBS pose
deformation due to Gaussian position offset.

II. RELATED WORK

In this section, we introduce hand mesh reconstruction,
animatable hand avatar animation, and Gaussian-based human
avatars related to our approach. For a comprehensive under-
standing of neural radiance field and Gaussian splatting, we
direct readers to recent surveys [27]–[29].

A. 3D Hand Mesh Reconstruction

3D hand mesh reconstruction task aims to represent the hand
using a mesh model and reconstruct it from RGB images.
Earlier parametric-based approaches predominantly utilize the
MANO model [30], regressing its parameters to fit the input
images [31]–[33], [33], [34]. Alternatively, non-parametric
methods aim to directly regress the 3D hand vertices from in-
put images without any parametric model [12], [35]–[39]. Lin
et al. employ transformers to model interactions between hand
vertices and joints, facilitating the regression of 3D joints and
mesh vertices [35], [37]. Chen et al. introduce a lightweight
framework with an efficient 2D encoding and 3D decoding
structure, achieving up to 83 FPS [38]. Additionally, Xu et al.
present H2ONet [40], designed to reconstruct hand meshes
in the presence of occlusions. Previous methods primarily
focus on geometry, often overlooking the preservation of
realistic textures. Our method not only reconstructs the hand’s
geometry but also its photorealistic textured appearance.
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B. Animatable Hand Avatar

The neural radiance field [14], [41]–[44] has significantly
advanced novel view synthesis and 3D scene reconstruction by
modeling the geometry and color properties of any 3D query
point from a tracing ray. NeRF representation has facilitated
the creation of animatable hand avatars with realistic textures
[1], [15]–[17]. Chen et al. [15] introduce the HandAvatar
framework, a pioneering NeRF-based neural hand rendering
method. This framework utilizes a high-resolution MANO
model and a local-pair occupancy field to capture personalized
hand geometry and integrates a self-occluded illumination
field to simulate shadows. Despite its high rendering qual-
ity, HandAvatar demands substantial computational resources.
Mundra et al. [1] develop LiveHand, an efficient neural hand
rendering method. Their approach involves a novel mesh-
guided sampling strategy for efficient query point sampling
near the approximate hand surface and a super-resolution
module to minimize the number of rays queried. Consequently,
LiveHand achieves a real-time rendering speed of 45 FPS with
impressive quality. However, this super-resolution strategy,
while enhancing speed, reduces rendering quality, demonstrat-
ing the typical trade-off between speed and quality.

While NeRF-based methods provide high-quality hand ren-
dering, they encounter two main challenges: the heavy compu-
tational load from implicit representation and ray tracing that
hinder rendering speed, and the inverse skinning paradigm for
animation. This paradigm deforms query points from posed
space to canonical space, causing ambiguous correspondences
[45]. Our GaussianHand incorporates Gaussian splatting with
explicit representation and forward skinning deformation for
animatable hand avatar rendering, which is more efficient and
capable of achieving approximately 125 FPS for real-time
rendering with enhanced quality.

Furthermore, several studies [10], [11], [46]–[49] concen-
trate on creating relightable hand avatars that offer controllable
lighting effects by embedding illumination information. HARP
[10] and UHM [47] reconstruct hand meshes and UV textures,
rendering relightable hands with the Phong reflection model.
XHand [49] predicts pose-dependent mesh displacements to
refine the template hand and renders using the Lambertian
reflectance model. However, it overlooks pose-independent
geometric consistency. BiTT [48] reconstructs relightable in-
teracting hands from a single RGB image by leveraging the
symmetry information of two hands.

C. Gaussian-based Human Avatar

NeRF-based methods are hindered by implicit representa-
tion and slow rendering speeds. To overcome this, researchers
have adopted explicit 3D Gaussian representations for clothed
human avatars [18], [20], [50]–[56]. Lei et al. [53] intro-
duce GART, an explicit representation model for non-rigid
articulated avatars. GART employs a forward skinning model
to capture human and cloth deformations effectively. Li et
al. [51] develop Animatable Gaussians, which derive 3D
Gaussian properties from a 2D StyleGAN-based generator
for clothed human avatars. They also propose parameter-
izing these 3D Gaussians on the avatars’ front and back,

enhancing multi-view rendering capabilities. Hu et al. [20]
present GaussianAvatar, which initializes Gaussians on the
SMPL surface and introduces a dynamic appearance network
to estimate pose-dependent Gaussian properties. They further
implement a joint optimization of motion and appearance
in avatar modeling to ensure precise motion portrayal. Shao
et al. [55] propose SplattingAvatar, which disentangles the
motion and appearance of a virtual human with explicit mesh
geometry and implicit appearance modeling. By embedding
the Gaussians on a triangle mesh, SplattingAvatar achieves a
free-pose animation effect.

Previous Gaussian-based avatar methods primarily focus on
full-body human avatars, without specifically considering the
unique features of hands. Our GaussianHand is the first study
that introduces 3D Gaussian splatting for effectively rendering
hand avatars with realistic detailed nails, veins, and wrinkles
appearance while achieving fast real-time rendering speed,
marking a leap in the field of animatable hand avatar rendering.

III. METHOD

In this paper, we introduce the GaussianHand, a new real-
time 3D Gaussian rendering pipeline for hand avatar anima-
tion. Figure 2 shows the overview of our method.

Given a sequence of sparse view images of identity’s
moving hand {Ivf | v = 1 . . . V, f = 1 . . . F} captured from
F frames and V viewpoints, along with the corresponding
coarse estimated parametric hand meshes {M(θf , β)}f=1...F ,
where M denotes the parametric hand model [30], β denotes
the global shape parameters and θf is the f -frame pose
parameters, our goal is to create a realistic animatable hand
avatar capable of free-view and free-pose real-time rendering.

First, we represent the hand avatar with 3D Gaussians and
estimate the animatable hand Gaussians properties through the
network (Sec. III-A). Second, we present the Hand Gaussian
Blend Shapes to offset the initialized Gaussians’ position for
modeling the unsmoothed hand surface, thus reserving realistic
hand appearance details (e.g., nails and wrinkles), while also
ensuring pose-independent consistent hand geometric features
(Sec. III-B). Third, we propose the Neural Residual Skeleton
and Residual Skinning Weights to rectify LBS deformation for
posing the canonical Gaussians (Sec. III-C). Finally, we train
our network with the rendered hand Gaussians supervised by
the input ground truth images (Sec. III-D).

We formulate our GaussianHand as:

Î(β, θ,Gbs
c , A) =

Splat(L̂BS(Gbs
c ,W,B(J, θ, β), Ŵ,B(Ĵ , θ)), A),

(1)
where Î(·) denotes the rendered posed hand image, and β, θ
denote the shape and pose parameters. We denote the initial-
ized canonical hand Gaussians as Gc. Our HGBS optimizes the
position of Gc to achieve Gbs

c for reversing detailed appearance.
A denotes the color and scale properties of the Gaussians.
Gbs
c are deformed to the posed space through our proposed

L̂BS with correction term, which takes the predefined MANO
skeleton J with skinning weights W , as well as our NSR Ĵ
with RSW Ŵ . The rigid kinematic chain transformation [30]



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, JUNE 2024 4

...

Canonical 
Gaussians

Gaussian Shape Blending

Canonical
Encoder

Pose
Encoder

Caonical Features

Pose Features

Canonical
Decoder

Pose
Decoder

Canonical Gaussians

Initial Posed Gaussians

...

...

Blend-shaped
Gaussians

Corrected LBS

Hand Gaussian Blend Shapes

Estimating Animatable Hand Gaussians Properties LBS with Neural Residual Skeleton

Standard LBS

Colors

Scales

+

Fig. 2. Overview of our GaussianHand. Left: We initialize unposed canonical Gaussians Gc on the MANO surface. Through the standard LBS, we can
achieve the initial posed Gaussians Gp. The Gaussians color, scale properties, as well as other necessary properties of our HGBS and the NRS and RSW, are
estimated by the network. Upper Right: We propose HGBS to model the non-smoothed hand surface. The HGBS optimizes the geometry of Gc to achieve
Gbs
c by applying the position offsets, which are composed by the learned Gaussian shape basis S and the blend coefficients C. Lower Right: The estimated

NRS Ĵ (calculated from the learned skeleton regressor R) and Residual Skinning Weights Ŵ act as a residual term to rectify the LBS, which deforms Gbs
c

to attain the final posed blend-shaped Gaussians Gbs
p for splatting rendering.

B outputs a set of bone transformations. The 3D Gaussian
splatting Splat(·) renders posed Gaussians as an output image.

A. Estimating Animatable Hand Gaussians Properties

3D Gaussian Splatting [18] is a scene representation that
allows real-time free-view photo-realistic rendering. Each 3D
Gaussian is defined by the 3D position x ∈ R3, quaternion
rotation q ∈ R4 , 3D scaling σ ∈ R3, opacity α ∈ R, and color
τ ∈ R3 properties. The 3D Gaussians are initialized on SfM
[57] points and optimized to fit the input images through the
differentiable splatting rendering process. Readers are referred
to [18], [27], [29] for more details.

We first initialize canonical Gaussians Gc on the registered
canonical MANO [30] surface and map it as a UV position
map Ic ∈ RH×W×3 on the 2D hand manifold S2 for extracting
canonical features fc ∈ RC through a 2D UNet encoder [58]
Ec : S2 ∈ R3 → RC .

Given input shape and pose parameters β, θ, we attain the
initial posed Gaussians Gp by the standard LBS:

Gp = LBS(Gc,B(J, β, θ),W). (2)

Specifically, the predefined skeleton J with nb joints returns
nb bone transformations through rigid kinematic chain trans-
formation B as:

B(J, β, θ) = [B1, B2, . . . , Bnb
], (3)

where Bi ∈ SE(3) denotes transforming the coordinate frame
of i-th canonical joint to the posed coordinate frame [53]. With
these transformations, Gc are deformed to the posed space by:

xi
p =

(
nb∑
k=1

Wi
kBk

)
xi
c, (4)

where xi
c, x

i
p denotes the position property of the i-th Gaussian

of Gc and Gp respectively, and Wi
k ∈ R denotes the skinning

weights of the k-th joint at position xi
c. W is initialized by

interpolating MANO’s predefined skinning weights. The pose
features fp ∈ RC of Gp are extracted through the pose encoder
Ep, which shares the same structure with Ec.

We apply two MLP decoders to estimate the Gaussian
properties. The pose-independent canonical decoder dc takes
input fc and predicts the Gaussian shape basis S and the
Residual Skinning Weights Ŵ as:

S, Ŵ = dc(fc). (5)

The pose-dependent decoder dp takes concatenated [fc, fp]
as input and predicts the blend coefficients C, the residual
skeleton regressor R, and colors, scales properties A as:

A, C,R = dp(cat[fc, fp]), (6)

where [·, ·] denotes the concatenation operation.
Our HGBS (Sec. III-B) optimizes the position offset of Gc

to achieve Gbs
c , and our NRS (Sec. III-C) rectifies the LBS

deformation to attain the final posed blend-shaped Gaussians
Gbs
p for splatting rendering [18].

B. Hand Gaussian Blend Shapes

Our Hand Gaussian Blend Shapes aims to offset the initial-
ized canonical Gaussians Gc on the smooth MANO surface to
the realistic hand surface that reverses geometric details, such
as the palm wrinkles, the protruding veins, and the nails. The
HGBS should also maintain shape consistency across various
hand poses, such as the finger length and thickness, nail shape,
the position of veins, etc.

To achieve the above goals, we propose a two-factor rep-
resentation, including the pose-independent Gaussian shape
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basis and pose-dependent blend coefficients. The Gaussian
shape basis is a set of point offsets that are learned to model the
common geometric features of hand appearance that are shared
across different poses. The blend coefficients are learned to
express pose-dependent features, such as the depth of the
wrinkles that varies with poses. These position offsets for the
Gaussians are derived by linearly blending the Gaussian shape
basis with the blend coefficients. This linear combination
provides an efficient and consistent method for depicting the
hand’s appearance in terms of its geometric structure.

Pose-independent Gaussian Shape Basis. Given the
canonical features fc extracted from the initialized canoni-
cal Gaussians Gc, we predict the pose-independent Gaussian
shape basis S through the canonical decoder dc, where S =
[S1,S2, . . . ,Sn] denotes the n Gaussian shape basis, and each
shape basis Si ∈ RN×3 represents the position offsets of N
Gaussians.

Pose-dependent Blend Coefficients. We learn the pose-
dependent blend coefficients C through the pose decoder dp
from [fc, fp], where C = [C1,C2, . . . ,Cn] represents the
weights of n Gaussian shape basis. Ci ∈ RN×3 denotes the
point-wise blend coefficients.

Canonical Gaussian Position Offset. The Gaussian posi-
tion offsets ∆bs are obtained by linearly blending the Gaussian
shape basis S with the blend coefficients C as:

∆bs =

n∑
i=1

Ci ⊙ Si, (7)

where ⊙ denotes the Hadamard element-wise product. By
applying the Gaussian position offsets ∆bs to the canonical
Gaussians Gc as:

x̂c = xc +∆bs, (8)

where x̂c denotes the position of Gbs
c , we make Gaussians shift

from MANO surface for reversing the realistic hand geometric
surface.

C. LBS with Neural Residual Skeleton

Given the blend-shaped Gaussians Gbs
c in the canonical

space, we aim to deform them to the posed space correspond-
ing to the input pose parameter θ through LBS for free-pose
rendering. Typically, MANO predefines W for LBS, assuming
that vertices are located on the original MANO surface. In
contrast, our Gbs

c deviates from this surface to preserve realistic
geometric features by HGBS. Consequently, simply applying
standard LBS to Gbs

c results in discrepancies. We aim to
compensate for the deformation discrepancy by introducing
the Neural Residual Skeleton and Residual Skinning Weights
as a residual term to the standard LBS, ensuring faithful
rendering in various poses.

Skeleton Regressor. Since the LBS discrepancies are
caused by ∆bs, we propose to learn a skeleton regressor
R ∈ Rnb×N to regress the NRS Ĵ ∈ Rnb×3 from ∆bs as:

Ĵ = R ·∆bs. (9)

We define NRS consists of nb joints and share the same
articulation structure with MANO. Given the pose parameter

θ, the rigid kinematic chain transformation B outputs nb bone
transformations of Ĵ :

B(Ĵ , θ) = [B̂1, B̂2, . . . , B̂nb
] (10)

Corrected LBS. We define the L̂BS to achieve the posed
hand Gaussian Gbs

p from Gbs
c . Specifically, we deform x̂i

c, the
position property of the i-th Gaussian of Gbs

c , as follows:

x̂i
p =

(
nb∑
k=1

(
Wi

kBk + Ŵi
kB̂k

))
x̂i
c, (11)

where Ŵ denotes the RSW learned from the canonical decoder
dc, and Ŵi

k ∈ R denotes the skinning weight of the k-th neural
residual joint at position x̂i

c. B̂k represents the k-th residual
bone transformation.

D. Training Strategy

We employ a two-stage optimization process to train our
network. Given that the input ground truth pose parameters
θ are initially estimated coarsely and typically inaccurate,
following GaussianAvatar, in the first stage we optimize θ
through gradient descent with the network. In the second stage,
θ is fixed. We adopt the following loss functions to supervise
the training process following [20]:

L = λrbgLrbg + λssimLssim + λlpipsLlpips

+ λoffsetLoffset + λscaleLscale,
(12)

where Lrbg , Lssim, Llpips are the L1 loss, SSIM loss, and
LPIPS loss between the Gaussian splatting rendered image
and the ground truth image, respectively. Loffset and Lscale

denote the L2 regularity term of the predicted position offset
∆bs and scale property of the Gaussians. We set λscale = 0
in the second stage.

IV. EXPERIMENTS

A. Implementation Details

Following Hu et al. [20], we employ the U-Net architecture
[58] as both the canonical and pose encoder. The pose decoder
comprises 4-layer MLPs with 256 hidden units, followed by
four 3-layer MLPs dedicated to predicting blend coefficients,
the skeleton regressor, and the properties of Gaussian scales
and colors. The canonical decoder is constructed using two
4-layer MLPs, each with 256 hidden units. We maintain fixed
Gaussian rotations and opacity settings. We initialize N =
87, 779 Gaussians on the MANO surface and set the number
of Gaussian shape basis as n = 8. Our NRS Ĵ consists of
nb = 16 joints.

The loss function weights are set as follows: λrgb =
0.8, λssim = 0.2, λlpips = 0.2, λscale = 1.0, λoffset = 10.
Additionally, we incorporate an optimizable feature tensor to
capture a coarse appearance of the model, consistent with
[20]. Experiments are trained on a single NVIDIA RTX 4090
GPU. The first stage of our training takes approximately 1.5
hours for 41, 600 iterations, and the second stage requires
2.5 hours for 83, 200 iterations. In comparison, HandAvatar
requires about 8 hours, and LiveHand requires about 7 hours.
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Following HandAvatar [15], we evaluate the rendering qual-
ity using several numerical metrics, including PSNR, LPIPS,
and SSIM. We also report the rendering time in terms of FPS
on the NVIDIA RTX 4090 GPU.

B. Datasets

InterHand2.6M. InterHand2.6M [23] is a large-scale RGB-
based 3D hand pose dataset comprising videos of hands in
various poses captured from multi-view cameras. The dataset
provides ground truth hand images with foreground masks,
camera extrinsic and intrinsic, and coarse MANO parame-
ters for each frame. Consistent with HandAvatar [15], we
selected three sequences from InterHand2.6M: test/Capture0,
test/Capture1, and val/Capture0. Each sequence contains a
training split (named ROM04 RT Occlusion) and a test split
(named ROM03 RT No Occlusion) with different hand poses
from 139 camera viewpoints. While HandAvatar utilized all
139 viewpoints in both splits, we adopted a more challenging
setting by selecting only 5 and 20 viewpoints from the training
split, while maintaining the 139 viewpoints in the validation
split. This approach heightened the challenge as our test set
encompasses not only novel poses but also novel viewpoints.
The comparison baselines, which utilize the entire training set,
are evaluated solely on novel poses.

Hand Appearance. Karunratanakul et al. [10] publish the
Hand Appearance dataset containing a right hand in normal
office lighting captured by a monocular phone camera to
simulate end-users casual habits. The dataset provides hand
RGB images with ground truth masks, coarse-fitted MANO
parameters, and camera settings. Following UHM [47], among
9 sub-sequences of subject 1, 1 to 5 are used for the training,
and 6 to 9 are used for the testing.

C. Comparison Study on InterHand2.6M

We compare our GaussianHand with recent state-of-the-art
animatable hand avatar methods with publicly available code,
including HandAvatar [15] and LiveHand [1].

Training Viewpoints. For a fair comparison, we conduct
experiments on the InterHand2.6M dataset with the same train-
ing and testing split as HandAvatar [15]. We re-train LiveHand
[1] on the same setting based on their public code. Note that
experiments conducted by HandAvatar and LiveHand use 139
viewpoints for both training and testing, focusing on a novel-
pose evaluation. In contrast, our GaussianHand uses only 5
and 20 viewpoints for training and 139 viewpoints for testing,
addressing both novel-pose and novel-view evaluations, which
is more challenging.

Quantitative Results. The quantitative rendering quality
comparison between our GaussianHand and prior methods on
the InterHand2.6M is shown in Table I. Our GaussianHand
demonstrates the best rendering quality on all three sequences
with only 20 training views, with the PSNR reaching 32.31,
30.79, and 32.13, respectively. These scores surpass those of
the previous state-of-the-art method, LiveHand, by margins
of 0.51, 0.74, and 1.29, and exceed the scores of HandA-
vatar by 4.08, 4.23, and 4.08, respectively. Even under the
more extreme condition of only 5 sparse training views, our

GaussianHand maintains competitive results compared to other
methods, demonstrating its consistency and robustness to novel
views. Additionally, the proposed GaussianHand achieves the
highest rendering speed of 125 FPS, which is 25 FPS higher
than the real-time method LiveHand.

LiveHand uses a super-resolution module to enhance render-
ing speed and achieves promising results of 100 FPS. However,
this super-resolution strategy trades off speed for quality
and does not improve neural rendering quality. In contrast,
our GaussianHand introduces a distinctly different Gaussian
splatting rendering pipeline with explicit representation and
forward skinning deformation. Our HGBS effectively reverses
the hand appearance details in geometry, and our NRS allows
accurate pose deformation. Together, they significantly elevate
the rendering quality, demonstrating the superiority in both
efficiency and quality.

Visualization Results. The numerical improvements in the
metrics are also reflected by the visualization results, as
shown in Fig. 3. We visualize our GaussianHand’s rendering
results under 5 and 20 training views and compare them with
HandAvatar and LiveHand, alongside the ground truth images
for reference. We summarize the qualitative improvements
of our GaussianHand as follows. 1) Nails: As shown in the
first three rows, our GaussianHand can render high-fidelity
fingernails, while HandAvatar’s nails lack realistic colors and
shapes, and LiveHand’s nails appear blurry. Our GaussianHand
under 5 views can also render nails effectively. 2) Blood
Vessels: The fourth row shows that GaussianHand can render
the blood vessels bulging on the back of the hand. In contrast,
LiveHand tends to blur the thread-like vessel shapes, and
HandAvatar only renders the obvious veins in the lower right,
ignoring the more subtle ones in the upper left. 3) Shape
consistency. The fifth and sixth rows show that GaussianHand
can maintain the consistency of finger shapes across different
poses. HandAvatar tends to render the fingers to be overly
rounded, and LiveHand’s fingers tend to have unnatural bumps
at the knuckles. The first three rows also demonstrate the nail
shapes are consistent across different poses. 4) Wrinkles: The
last row and the second row show that our GaussianHand can
render realistic wrinkles on the palm. HandAvatar also outputs
clear wrinkles, but it lacks a realistic shadow effect. LiveHand
outputs blurry wrinkles.

These improvements can be explained as follows: 1) Our
HGBS can capture the geometric features shared across dif-
ferent poses from the input RGB images, providing accurate
canonical position offsets. Our NRS ensures the offsets are
correctly deformed to the posed space. Accurate reconstruction
of geometry for nails, veins, and wrinkles, is crucial for clear
and detailed splatting rendering. 2) The consistency of shapes
across different poses, is maintained by the linearly correlated
geometric offsets. While the hand geometry can deform with
different poses, all deformations in the full pose space adhere
to the same pose-independent Gaussian shape basis and thus
restrict outliers of shape deformed.

We also retrain HandAvatar and LiveHand using the same
20 training views of our GaussianHand. The visualization
results, presented in Figure 4, illustrate that LiveHand strug-
gles with sparse viewpoints. Its rendering results appear more
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TABLE I
RENDERING QUALITY COMPARISON AMONG OUR GAUSSIANHAND AND PRIOR METHODS ON THE INTERHAND2.6M DATASET. NOTE THAT PRIOR

METHODS ARE TRAINED FROM 139 VIEWPOINTS, WHILE OUR GAUSSIANHAND IS TRAINED FROM ONLY 5 AND 20 VIEWPOINTS.

Method test/Capture0 test/Capture1 val/Capture0 FPSLPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
HumanNeRF [22] 0.115 27.64 0.884 0.118 26.31 0.880 0.119 27.80 0.882 -
HandAvatar [15] 0.104 28.23 0.894 0.108 26.56 0.890 0.106 28.04 0.890 0.38
LiveHand [1] 0.030 31.80 0.907 0.033 30.05 0.899 0.031 30.83 0.923 100
GaussianHand (5 views) 0.031 32.07 0.964 0.033 30.64 0.960 0.032 31.65 0.961 125
GaussianHand (20 views) 0.026 32.31 0.967 0.030 30.79 0.965 0.029 32.12 0.962 125

Fig. 3. Visualization results of HandAvatar [15], LiveHand [1], and our GaussianHand under 5 and 20 training views for novel-pose animation on the
InterHand2.6M dataset. We label the number of training views in brackets. The exposure of the entire figure is increased for clearer visualization.
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blurry around the edges and lack clear texture details. This
issue likely stems from its reliance on an implicit repre-
sentation combined with a super-resolution module, which
complicates the training convergence. HandAvatar’s wrinkles
and veins tend to be overly smooth, lacking realistic bumps
or depression effect. This is a consequence of its texture
map-based approach, which does not incorporate geometric
optimization for modeling the unsmoothed hand surface. Our
GaussianHand, on the contrary, consistently maintains high-
quality, detailed textures and achieves the best rendering
results over the compared methods.

We report the numerical results for the 20 training views
experiment. The LPIPS, PSNR, and SSIM of HandAvatar
are 0.069, 27.84, and 0.9, respectively. LiveHand achieves
0.031, 30.49, and 0.87, respectively. Our method demonstrates
superior rendering quality with 0.026, 32.31, and 0.967.

We argue that two principal reasons contribute to the
superior rendering results under the sparse view conditions
of our method. Firstly, our GaussianHand incorporates view-
independent and explicit geometry, and the introduction of
HGBS and NRS further improves the geometric accuracy.
Secondly, our network directly predicts the Gaussian color
property instead of relying on view-dependent spherical har-
monic bases for querying color. In contrast, NeRF-based meth-
ods employ implicit representations, and the sample points
and harmonic bases are heavily dependent on view-dependent
ray tracing. Consequently, NeRF-based methods typically ex-
hibit slower convergence and require more views to achieve
multi-view consistency. To demonstrate the reliance of NeRF-
based methods on view-dependence, we disable the view-
dependence strategy of LiveHand and train it on the same 20
training views. Experiment shows that LiveHand without view-
dependence fails to converge effectively, leading to enormous
decreases in LPIPS, PSNR, and SSIM by 0.171, 8.67, and
0.514, compared to LiveHand with view-dependence.

Fig. 4. Visualization results of 20 views training for HandAvatar [15],
LiveHand [1] and our GaussianHand. The number of training views is labeled
in brackets. The figure exposure is increased.

D. Comparison Study on Hand Appearance

We compared our GaussianHand model with HARP [10]
and UHM [47] on the Hand Appearance dataset. Both HARP
and UHM fine-tune their models for hand poses, lighting,
and shadows on the test set. For a fair comparison, we
fine-tune hand poses and the pose encoder Ep on the test

set while keeping all other network parameters freezed. The
quantitative results, presented in Table II, indicate that the
proposed GaussianHand outperforms HARP by margins of
0.036, 5.04, and 0.18 for LPIPS, PSNR, and SSIM metrics,
respectively. In comparison to UHM, our method exceeds
performance by 0.01 and 0.018 in LPIPS and SSIM while
achieving comparable results in PSNR.

Qualitative results, as shown in Fig. 5, reveal that our
GaussianHand renders hand appearances with greater fidelity
than HARP and UHM. Specifically, the first row shows that
our method renders the details of tendons and blood vessels
on the back of the hand, whereas HARP and UHM produce
blurry results. The second row illustrates that GaussianHand
effectively captures pose-dependent variations in appearance.
Notably, the tendons on the back of the hand become more
pronounced in a spread pose compared to the grasp pose
shown in the first row. In contrast, the tendons in HARP and
UHM remain blurry, similar to those in the first row. In the
third row, we observe that our method renders clear and natural
wrist wrinkles, while HARP and UHM show overly concave
tendons. Finally, the last row confirms that our model produces
fingernails with higher fidelity than both HARP and UHM.

TABLE II
QUANTITATIVE EVALUATION OF THE APPEARANCE RENDERING TASK ON

THE HAND APPEARANCE DATASET.

Method LPIPS↓ PSNR↑ SSIM↑
HARP [10] 0.081 27.50 0.947
UHM [47] 0.055 32.55 0.957
GaussianHand (ours) 0.045 32.54 0.965

HARP                       UHM                    Ours  GT

Fig. 5. Visualization results of HARP [10], UHM [47] and our GaussianHand
on the Hand Appearance dataset.

E. Ablation Study

We conduct ablation studies using the InterHand2.6M
dataset under 5 training views to evaluate the effectiveness
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TABLE III
ABLATION STUDY FOR MODEL COMPONENTS ON THE INTERHAND2.6M DATASET UNDER 5 TRAINING VIEWS.

Method test/Capture0 test/Capture1 val/Capture0
LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

Baseline 0.032 31.60 0.962 0.0362 29.63 0.956 0.035 31.08 0.959
Baseline+HGBS 0.031 31.90 0.963 0.033 30.53 0.961 0.032 31.61 0.961
Baseline+HGBS+NRS 0.031 32.07 0.964 0.033 30.64 0.960 0.032 31.65 0.961

of our proposed components, including HGBS and NRS.
First, we apply the GaussianAvatar [20] as the baseline by
replacing the SMPL model with the MANO model. The
baseline predicts each canonical Gaussian’s position, scale,
and color properties directly through the MLP decoder. Next,
we integrate our proposed HGBS module to the baseline
(Baseline+HGBS), predicting the Gaussian shape basis and
blend coefficients to refine the geometry of canonical Gaus-
sians, instead of directly predicting the position offsets as
the baseline. This setting still uses the standard LBS for
pose deformation. Finally, we incorporate the proposed NRS
to form the complete GaussianHand (Baseline+HGBS+NRS).
The NRS specifically rectifies the LBS deformation of position
offsets. Numerical results are presented in Table III, and
qualitative results are visualized in Fig. 6.

Experimental results of three module combinations are
shown in Table III, Specifically, compared to the Baseline,
the Baseline+HGBS improves the rendering quality in PSNR
by 0.3, 0.9, and 0.53 on the three sequences, respectively,
demonstrating the effectiveness of our proposed HGBS in re-
constructing pose-consistent geometry. With the addition of the
NRS, our complete GaussianHand (Baseline+HGBS+NRS),
further improves the rendering quality over Baseline+HGBS in
PSNR by 0.17, 0.11, and 0.04, achieving the best performance
in terms of LPIPS, PSNR, and SSIM on all three sequences,
only except for the SSIM on test/Capture1. The improvements
of NRS are not as significant as HGBS, since it is a correction
residual term to the standard LBS, but the improvements still
demonstrate the existence of inaccurate pose deformation and
the necessity of NRS.

The visualization results in Fig. 6 further demonstrate the
effectiveness of our proposed HGBS and NRS components.
The comparison results can be summarized as follows: 1)
Nails: The first row shows that the Baseline fails to render
the nail shape since it directly predicts the position offsets
without considering geometric consistency over poses, leading
to varied nail shapes. In contrast, Baseline+HGBS effectively
renders the nails, although the nail edges appear slightly
sharp. Baseline+HGBS+NRS further smooths the nail edges,
rendering more realistic results. The nails in the second row
also support this conclusion. 2) Fingers: The first and second
rows show that the Baseline method distorts the edge shape
of fingers. Our method maintains smooth shape consistency
across different poses, demonstrating the effectiveness of
HGBS in capturing pose-consistent geometry. 3) Wrinkles:
The third row shows rendered palm wrinkles. The Baseline
blurs the wrinkles, while the incorporation of HGBS provides
clearer wrinkles due to more accurate geometric offsets. NRS
further enhances the clarity of both wrinkles and nails. 4)

Blood Vessels: The fourth row shows rendered blood vessels.
The Baseline renders a shaky vessel shape. The introduction of
HGBS produces a straighter and more realistic vessel shape,
and the addition of NRS makes the vessels even clearer.

F. Geometry Visulization

To validate that our method accurately models hand surface
geometry details (including wrinkles, veins, and nails) while
maintaining consistency across various poses, we visualize
two Gaussian shape basis, their corresponding relative blend
coefficients (calculated by subtracting the coefficients of the
canonical pose), and the posed blend-shaped Gaussian posi-
tions for three different MANO driving poses in Fig. 7.

Firstly, the visualization results demonstrate that our HGBS
effectively formalizes the Gaussian shape basis as pose-
independent for preserving geometric consistency, as its values
remain stable across different poses. In contrast, the blend
coefficients are pose-dependent since the first blend coefficient
exhibits significant variability across different poses, while the
second exhibits less but still notable variation.

Secondly, the visualization results confirm that our method
can identify which hand areas should deform across poses. The
first Gaussian shape basis highlights geometric deformation in
the back of the hand and the finger roots, as indicated by red
coloring (i.e., larger values), indicating that these areas could
deform across poses. In contrast, the geometry of the gray
areas remains consistent. The second shape basis emphasizes
the deformation of the fingertips, particularly capturing the
transformation of finger wrinkles.

Finally, we visualize the posed blend-shaped Gaussian posi-
tions as point clouds. The results demonstrate that our method
accurately models the detailed hand geometry. The first row
validates the fingernail silhouettes, the second row highlights
the palm wrinkles, and the last row shows that the bulging
blood vessels are preserved.

G. User Study

We design a within-subject study to evaluate the percep-
tual synthesis quality on the InterHand2.6M dataset for our
GaussianHand and LiveHand.

Participants and Setup. We recruited 15 participants (8
males and 7 females, aged between 20-28 years), all of whom
had normal or corrected-to-normal vision.

Conditions. The conditions included GaussianHand and
LiveHand. Both methods are trained on the test/Capture0 se-
quence of the InterHand2.6M dataset. Note that GaussianHand
is trained on 20 views, while LiveHand is trained on 139
views.
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Fig. 6. Visualization results of ablation study for the HGBS and NRS modules on the InterHand2.6M dataset under 5 training views. The figure exposure is
increased for clear visualization.

MANO 
Driving Pose

Pose-independent
Gaussian Shape Basis

Pose-dependent
Blend Coefficients

Blend-shaped 
Gaussians Position

Fig. 7. Visualization of input MANO driving poses, two Gaussian shape basis with their corresponding blend coefficients (relative to the canonical ones),
and the positions of the posed blend-shaped Gaussians. The colormaps represent values, with red indicating larger values.
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GaussianHand

LiveHand

Average Score

4.6±0.507

3.733±0.458

Fig. 8. Statistics results of the subjective user study for scoring the visual
perceptual quality of LiveHand and our GaussianHand. Higher scores denote
more realistic quality.

Task. We randomly select 15 poses from the validation split.
We animate our GaussianHand and LiveHand with these poses
to synthesize posed hands and rotate the camera around each
hand for rendering free-view videos. Each video lasts for 8
seconds. The selected hand poses and camera trajectories are
consistent across the two methods for fair comparison.

We show these videos to the participants and ask for realistic
ratings. Specifically, for each pose, we present ground truth
hand images of the pose under 3 different views first, then
show the videos of the two methods simultaneously on the left
and right sides of the screen for the sake of comparison. The
orientation of the two videos is randomized. After displaying
the videos, we present a questionnaire to the participants to
rate the realism of the hands’ appearance on a 5-point Likert
scale, where 1 indicates “very unrealistic according to the
ground truth” and 5 indicates “very realistic according to the
ground truth”. To mitigate the effects of visual fatigue, after
completing the ratings, participants are given a 10-second rest
before proceeding to the next pose.

Results. Figure 8 shows the statistical results of the average
score across 15 poses for the two methods. The results indicate
that our GaussianHand achieves an average score with a mean
of 4.6 and a standard deviation of 0.507, while LiveHand
achieves an average score with a mean of 3.733 and a standard
deviation of 0.458. We apply the p-value and Cohen’s d to
estimate the average score differences. The p-value < 0.001
indicates a significant improvement in our GaussianHand, and
the Cohen’s d = 1.794 > 0.8, indicating a huge effect size.
These results demonstrate that the visual perceptual quality
of our GaussianHand significantly outperforms LiveHand for
free-view rendering, even under the challenging setting of 20-
view training. This is because our GaussianHand effectively
captures detailed hand geometric features and maintains pose
consistency, as demonstrated in the ablation study.

V. CONCLUSION

We proposed GaussianHand, the first Gaussian-based an-
imatable hand avatar rendering pipeline that achieves high-
quality and high efficiency for both free-pose and free-view
hand appearance rendering. Our method involves two novel
components, HGBS and NRS. The HGBS captures detailed
hand geometric features while maintaining consistency across
varied poses. Concurrently, the NRS with the learned RSW,
serves as a corrective term for addressing inaccuracies in

LBS deformations caused by the geometric offsets. Quanti-
tative assessments and visualization experiments conducted
on the InterHand2.6M and Hand Appearance datasets indicate
that the proposed GaussianHand remarkably surpasses current
methods in rendering quality and efficiency, achieving state-
of-the-art performance. Our ablation studies further verify
the efficacy of the proposed components, and the user study
indicates that our rendering results significantly enhance users’
subjective perceptual scores compared to the previous method.

Our method has several limitations. First, our network struc-
ture has feature coupling, which may hinder fast convergence
and reduce interpretability. The coupling arises because all
Gaussian properties are estimated from the shared canonical
and pose features. Future work will focus on optimizing
the network structure to enhance interpretability. Second, our
method exclusively models hand geometry, neglecting the vari-
ability of pose-dependent self-shadows, the view-dependent
appearance, and the relighting conditions. Hence, the hand
appearance under our method exhibits static lighting and
shadow effects and struggles with dynamic lighting sources.
Future work aims to enhance our Gaussian hand by con-
sidering dynamic lighting effects. Third, our current model
focuses on a single hand, without considering the complexities
of two-hand interactions, which can involve intricate poses,
occlusions, and potential geometry interpenetration challenges.
Future work will consider the mutual information between
hands to address these challenges. Fourth, the animation of
the trained hand avatar is driven by input pose parameters
without accounting for model penetration. As a result, our
method renders a molded hand when the input driving poses
involve self-penetration.

Hand avatar modeling presents potential societal challenges.
The creation of highly realistic hand models raises concerns
about consent, particularly when individuals’ hands are mod-
eled and driven without their explicit permission. Unauthorized
use of avatar models could lead to issues such as identity theft
or defamation, posing significant privacy risks. The community
needs ethical regulations that address privacy concerns and
ensure the fair use of hand modeling technologies.
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