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VPRF: Visual Perceptual Radiance Fields
for Foveated Image Synthesis

Zijun Wang, Jian Wu, Runze Fan, Wei Ke, and Lili Wang

Fig. 1: Left: Foveated images synthesized by our method. Middle: Visual sampling rate map generated by our method. Right:
Magnified images of our rendering results. Compared to the state-of-the-art FoV-NeRF [1] method, our results are closer
to the ground truth. The PSNR of our method achieves 1.34× in the foveal region (purple square) and 1.69× in the salient
region in the periphery (green square). While preserving more details in both regions, our method is about 2.6× faster than
FoV-NeRF.

Abstract— Neural radiance fields (NeRF) has achieved revolutionary breakthrough in the novel view synthesis task for complex
3D scenes. However, this new paradigm struggles to meet the requirements for real-time rendering and high perceptual quality
in virtual reality. In this paper, we propose VPRF, a novel visual perceptual based radiance fields representation method, which
for the first time integrates the visual acuity and contrast sensitivity models of human visual system (HVS) into the radiance
field rendering framework. Initially, we encode both the appearance and visual sensitivity information of the scene into our
radiance field representation. Then, we propose a visual perceptual sampling strategy, allocating computational resources
according to the HVS sensitivity of different regions. Finally, we propose a sampling weight-constrained training scheme to
ensure the effectiveness of our sampling strategy and improve the representation of the radiance field based on the scene
content. Experimental results demonstrate that our method renders more efficiently, with higher PSNR and SSIM in the foveal
and salient regions compared to the state-of-the-art FoV-NeRF. The results of the user study confirm that our rendering results
exhibit high-fidelity visual perception.

Index Terms— Virtual reality, Foveated rendering, Visual perceptual, Contrast sensitivity

1 INTRODUCTION

Novel view synthesis task offers significant benefits for virtual
reality (VR) by presenting high-quality rendering results for users.
Neural radiance fields (NeRF) [2] leverages a learning-based ap-
proach to capture the geometry of scenes as well as view-dependent
effects, achieving realistic novel view synthesis results through con-
ventional volumetric rendering techniques, which is highly valu-
able for VR. NeRF utilizes images from various views of a given
scene as input, using an implicit multilayer perceptron (MLP) to
map the spatial information of 3D points to the color and density
attributes.

However, employing NeRF directly in VR presents rendering
speed bottlenecks. Although NeRF and its MLP-based variants
exhibit exceptional quality in view synthesis, the training time for
such representations spans 1-2 days, with nearly 30 seconds needed
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to render a single frame image, failing to meet the rendering perfor-
mance requirements of virtual environments. Compared to MLP-
based approaches, voxel-based methods offer superior rendering
performance. Recently, Yu et al. [3] demonstrated the impres-
sive efficiency of the voxel-based method (Plenoxels) by assigning
spherical harmonics coefficients to each voxel for view-dependent
appearance synthesis. While maintaining quality comparable to
NeRF, Plenoxels achieves a rendering speed that is two orders
of magnitude faster, with training times reduced to 27 minutes.
To further enhance the inference performance of NeRF, existing
work has focused on designing dedicated sampling networks to
estimate appropriate sample locations, thereby reducing the num-
ber of samples required per view ray and accelerating inference.
These sampling networks are typically optimized under supervi-
sion based on depth prediction [4] or the density distribution [5] of
the radiance field.

Existing NeRF acceleration methods considered only the scene’s
geometric information (depth, opacity) without leveraging the per-
ceptual characteristics of the human visual system (HVS) for op-
timization. Foveated rendering is an acceleration rendering tech-
nique based on the perceptual model of the HVS, allocating com-
putational resources to render high-quality images for the foveal
region while lower-quality for the peripheral region. Deng et al. [1]
proposed FoV-NeRF, which implicitly represents the scene by al-
locating two networks with varying parameter quantities for the
foveal region and peripheral region and renders images of different
quality. Nevertheless, FoV-NeRF faces several challenges. Firstly,
using implicit MLP-based representation demands more compu-
tational resources due to the dense network inferencing, which
challenges the rendering performance. Secondly, studies have
shown that many visual features of the peripheral region, such as
saliency, have a significant impact on visual perceptual quality [6].
FoV-NeRF focuses exclusively on the rendering quality of the
foveal region, neglecting the radiance details of peripheral salient

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 12,2024 at 13:24:05 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 11, NOVEMBER 20247184

regions. To further enhance rendering performance and overall
perceptual quality, it is crucial to introduce visual perception based
on scene content into the radiance field rendering model.

In this paper, we propose VPRF, a novel foveated radiance field
representation method that integrates the visual acuity and con-
trast sensitivity models of HVS into the radiance field rendering
framework. This method leverages input from multi-view RGB
images and corresponding visual sensitivity images for end-to-end
optimization, aiming to efficiently achieve high perceptual quality
rendering results. First, VPRF is a view-dependent explicit voxel-
based representation method, where each voxel stores optimizable
feature vectors that encode the scene’s geometric, appearance, and
visual sensitivity information. This representation enables the vi-
sual sensitivity feature to be directly synthesized with novel views,
the same as the scene appearance. Second, we propose a visual per-
ceptual sampling strategy to improve the performance in radiance
field rendering. Unlike the Fov-NeRF approach, which is based on
network parameter quantity, our method controls the computational
resource allocation for each pixel by regulating the sampling rate
along each ray. Third, we propose a sampling weight-constrained
training scheme for VPRF, which has a new loss function to limit
the weight distribution of sampling points and ensure the effec-
tiveness of the sampling strategy to improve the representation
capability of the radiance field based on the scene content.

We compare our VPRF method with the state-of-the-art foveated
neural radiance fields method and other NeRF acceleration methods
on both real-world and synthetic datasets. Our method renders
more efficiently (about 83FPS), with higher PSNR and SSIM in
the foveal and salient regions. Compared to Plenoxels [3] and
AdaNeRF [5], the efficiency of our method is improved by 5.1-
13.1×, and the quality of synthesis in the foveal and salient regions
is also enhanced. Compared to the FoV-NeRF method [1], our
method achieves synthesis quality improvement in all regions.
And at equal or superior quality, the efficiency of our method is
improved by about 2.6×.

Figure 1 shows the comparison of the rendering results between
our method, the ground truth, and the FoV-NeRF method. The
foveal region is marked in green, and the salient region in the
periphery is marked in purple. Details in these two regions are
magnified on the right side. Our method achieves superior synthesis
quality in both the foveal region and the salient region in the
periphery. In the foveal region, we better preserve the details of
the clock dial and the foliage. In the salient region, FoV-NeRF
fails to retain the details of letters on the book spines and exhibits
noticeable aliasing. We also conduct a user study to evaluate our
method. The results show that the visual perceptual quality of our
method has significantly increased compared to other methods.

In summary, the main contributions of our method are as fol-
lows:

• A voxel-based visual perceptual foveated radiance fields rep-
resentation (VPRF). To the best of our knowledge, this is the
first time that a visual sensitivity model and a visual contrast
model have been combined into NeRF’s rendering framework
to improve computational efficiency.

• An adaptive sampling strategy based on visual perception
in the NeRF inference process, which allocates rendering
resources according to the HVS varying sensitivity across
different scene regions, further improving perceptual quality
and efficiency.

• A training scheme based on sampling weight constraints for
end-to-end learning of our representation, which constrains
the solution space of the scene geometry, provides support
for the line-of-sight of the sampling strategy described above.

2 RELATED WORK

In this section, we first introduce prior work related to foveated
rendering and then discuss existing methods for NeRF accelera-
tion. For a more exhaustive analysis of foveated rendering, we
recommend the readers refer to the reviews [7, 8].

2.1 Foveated Rendering
Providing high-quality content to each location within head-
mounted displays (HMD) is computationally expensive. Guenter et
al. [9] proposed the first foveated rendering framework, leveraging
a visual acuity fall-off model [10] to accelerate rendering perfor-
mance without sacrificing perceptual synthesis quality. It rendered
three nested image layers around the gaze point by rasterization,

reducing the sampling rate with increasing eccentricity and fus-
ing these layers into the final result through bilinear interpolation.
Meng et al. [11] introduced a two-pass kernel foveated rendering
pipeline that parameterizes foveated rendering by embedding poly-
nomial kernel functions in a classic log-polar mapping, rendering
results to a reduced resolution buffer and converting results back
to full-resolution screen space via inverse log-polar transformation
to output the final rendering results. Friston et al. [12] proposed a
pipeline that achieves foveated rendering through ray casting for
each fragment within a single rasterization process, overcoming
the limitations of warping concerning disocclusions, object mo-
tion and view-dependent shading, as well as geometric aliasing
artifacts. Tursun et al. [13] introduced a luminance contrast aware
foveated ray tracing technique, demonstrating that significantly
reducing the number of tracing rays is possible if the local spatial
luminance contrast sensitivity function (CSF) [14] is considered
in foveated rendering. Jindal et al. [15] proposed a variable-rate
shading pipeline to accelerate rasterization rendering performance.
They divided the full-resolution image into multiple 16×16 image
blocks, which can be rendered with a different ratio of shader exe-
cutions. Then, they adaptively adjust each image block’s shading
accuracy and refresh rate based on temporal and spatiotemporal
luminance CSF. Murphy et al. [16] proposed a hybrid technique
based on the visual acuity fall-off model and spatial CSF, utilizing
ray casting to sample the geometry of scenes.

Beyond traditional ray-tracing [17–19] and rasterization-based
foveated rendering [20, 21] methods, many researchers have con-
centrated on the application of deep learning in foveated rendering.
Surace et al. [22] proposed a training procedure for a generative
network designed for foveated image reconstruction. This proce-
dure penalizes perceptually significant deviations in the output to
preserve perceived over natural image statistics. Bauer et al. [23]
used a two-pass deep neural reconstruction network derived from
the W-Net model, which sparsely samples a volume around a fo-
cal point and reconstructs the full-resolution volumetric rendering
result using a deep neural network. To further enhance the per-
formance of foveated rendering, Kaplanyan et al. [24] utilized
Generative Adversarial Networks (GANs) [25] to reconstruct pe-
ripheral regions, improving the peripheral rendering quality in
foveated videos. This method reconstructs a plausible peripheral
video from a small fraction of pixels provided in every frame by
finding the closest matching video to this sparse input stream of
pixels on the learned manifold of natural videos. However, con-
ventional foveated rendering methods depend on 3D resources to
reconstruct scene contents, and acquiring these resources in the
real world often involves noise, which introduces challenges in
presenting complex scene contents from a novel view in VR.

2.2 Neural Radiance Fields and Acceleration

To reconstruct 3D scenes and synthesize novel view images, the
development of Neural radiance fields (NeRF) [2] has attracted
extensive attention. NeRF uses fully connected neural networks
to represent 3D scenes as an implicit function and optimizes it
through differentiable volume rendering. It can recover the geome-
try and appearance information of a scene from input multi-view
2D images, training the network and rendering novel view images
by sampling points in 3D space through ray marching. Although
NeRF has achieved realistic synthesis quality, the rendering speed
is considerably slow, which limits its practical applications.

To accelerate NeRF rendering, recent works [26–30] utilize
explicit voxel grids to store the radiance and other features of a
scene, avoiding the intensive inference of MLP during runtime.
Hedman et al. [28] constructed a sparse 3D voxel grid to store
the learned opacity, diffuse color, and view-dependent effects fea-
ture generated by a pre-trained NeRF. It accelerates the rendering
performance by directly querying the voxel grid in the testing
process. Yu et al. [26] proposed NeRF-SH, which uses the same
optimization and volume rendering method as the original NeRF,
predicts the spherical harmonics (SH) coefficients instead of color
for each sampling point. These coefficients are used to synthesize
view-dependent colors without the need for additional network
inference. Finally, the SH coefficients and opacity are baked into a
sparse voxel-based octree for real-time rendering. However, these
methods even lengthen the overall training time by extracting fea-
tures from a pre-trained NeRF and then baking them into explicit
data structures. Yu et al. [3] proposed Plenoxels, which directly
optimize the SH coefficients stored in the feature grid, achieving
comparable rendering results to NeRF in only tens of minutes ofAuthorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 12,2024 at 13:24:05 UTC from IEEE Xplore.  Restrictions apply. 
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training time. This indicates that using an explicit feature grid can
achieve fast optimization and inference without sacrificing quality.
Müller et al. [30] proposed Instant-NGP, which optimizes features
of sampling points adaptively, prioritizing the sparse areas with
the most important fine scale detail through a hash table approach.
During the training phase, the sampling points that significantly
contribute to the final color will dominate. We use Plenoxels as
our volume rendering backbone to implement the visual perceptual
radiance fields representation with efficient performance. And un-
like Instant-NGP, our adaptive sampling strategy is mainly applied
in the testing phase to accelerate rendering efficiency according to
the visual sensitivity.

Other works increased the rendering speed by improving the
sampling efficiency of NeRF. The original NeRF employs a hier-
archical sampling strategy, where the volume density distribution
predicted by a coarse network is used to guide the sampling pro-
cess of a fine network. Neff et al. [4] introduced a depth oracle
network to replace the coarse network in original NeRF, designed
to predict appropriate sample locations along each ray. By re-
ducing the number of overall samples, this method improves the
rendering performance. However, it does not support end-to-end
training, and inaccurate depth information may affect the synthesis
quality. Piala et al. [31] proposed to train a sampling network,
which is supervised by the density predictions from a pre-trained
NeRF. This network learns a mapping from camera rays to posi-
tions along the rays, selecting sampling points that are most likely
to influence the final color of the pixels. Kurz et al. [5] introduced
an end-to-end dual-network architecture, which learns sampling
and shading networks simultaneously and only renders the output
of the important sample by the sampling network to accelerate
rendering. However, none of these methods considered the percep-
tual characteristics of HVS for the optimization of radiance field
rendering performance. Deng et al. [1] presented FoV-NeRF, the
first gaze-contingent neural radiance representation, and foveated
synthesis approach, incorporating the psychophysics of human
vision and stereo acuity into the egocentric neural representation
of 3D scenes. Due to the degradation of visual acuity with in-
creasing distance from the central line of sight [32], FoV-NeRF
uses multiple MLPs to synthesize images for foveal, peripheral
and far-peripheral regions. The foveal image is rendered with the
highest quality, while the peripheral and far-peripheral images with
lower quality, are then fused to generate the final foveated images
in real time. Currently, no method combines the HVS’s visual
acuity with scene content contrast sensitivity to accelerate radiance
field rendering. Our approach utilizes the advantages of explicit
representations and further improves rendering performance by in-
tegrating scene awareness and human visual perception to achieve
the goal of synthesizing high perceptual quality foveated images at
high frame rates.

3 METHOD

Given a set of RGB images {Irgb} and visual sensitivity images
{Ivs} with corresponding 6-DoF calibrated camera parameters, our
objective is to reconstruct the appearance and sensitivity represen-
tation of 3D scenes using feature grids, and synthesize high-quality
foveated images from novel views. Fig. 2 shows the overview of
our VPRF method. We introduce a new voxel-based visual per-
ceptual foveated radiance fields representation, where each voxel
encodes not only geometry but also appearance and visual sensi-
tivity at its corresponding 3D location (Section 3.1). In runtime
rendering, we propose a visual perceptual sampling strategy. A
visual sampling rate (VSR) map is generated and used to guide
adaptive sample selection along the ray, thus further enhancing the
rendering efficiency without compromising visual perception qual-
ity (Section 3.2). In the training process, we propose a sampling
weight-constrained training scheme for end-to-end learning of our
representation. The feature values within each voxel are directly
optimized by minimizing the discrepancy between rendered images
and input images, as well as by predicting visual sensitivity maps
and extracting visual sensitivity maps. Moreover, we introduce
a new weight constraint loss to restrict the weight distribution of
sampling points (Section 3.3).

3.1 Voxel-Based Visual Perceptual Foveated Radiance
Fields Representation

Previous work [3] has already demonstrated the advantages of di-
rectly optimizing the spherical harmonic (SH) coefficients stored
in explicit voxels for synthesizing novel view synthesis, which

offers efficient computation speeds and higher synthesis quality
compared to inferring density and color from MLPs [2]. Inspired
by this idea, we propose our visual perceptual radiance field rep-
resentation, which is based on the assumption that objects with
high visual sensitivity within a scene retain their conspicuousness
across different views, and visual sensitivity maps can be computed
through volumetric rendering equations. We construct explicit fea-
ture grids of the density Gσ , the color Gc and the visual sensitivity
Gs, storing density values σ , vectors of SH coefficients kc and
ks for each color channel and a single visual sensitivity channel
respectively. For a 3D point qi, its density and SH coefficient vec-
tors are computed through trilinear interpolation from the nearest
8 voxels through Equation 1:

kc(x) = T (Gc,x), ks(x) = T (Gs,x), σ(x) = T (Gσ ,x) (1)

where T denotes a trilinear interpolation, x is the 3D position of
the sampling point. The SH coefficients k in each voxel are used for
view-dependent evaluation. Given view direction d, querying the
predefined basis functions Y l

m(d), where l is the SH function degree
and m is the order. The view-dependent color c and sensitivity value
s of a sample are calculated by a weighted sum of Y l

m(d) for each
channel and the corresponding optimized coefficients:

c(x,d) = fSH(kc(x),d), s(x,d) = fSH(ks(x),d) (2)

fSH(k,d) = S(
lmax

∑
l=0

l

∑
m=−l

kl
mY l

m(d)) (3)

where S : → (1+ exp(−x))−1 is the sigmoid function for normal-
izing the colors. We use spherical harmonics of degree 2 for color,
allocating 9 coefficients per color channel. Given that visual sen-
sitivity information in images is typically low-frequency, we opt
to use spherical harmonics of degree 1 to model sensitivity, which
requires 4 coefficients. Moreover, the decrease in the number of
parameters allows for sensitivity to be computed quickly. Totally,
each voxel contains a total of 32-dimensional vectors: 31 for SH
coefficients and 1 for density σ .

The runtime rendering objective is mapping the 3D coordinates
(x,y,z) to a 32-dimensional feature vector (kc,ks,σ), then com-
bined with d through Equation 2 to synthesize view-dependent
color and sensitivity. Following the volume rendering formula in
NeRF, we calculate the color C(r) and sensitivity feature S(r) of
ray r by:

Ĉ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))ci (4)

Ŝ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))si (5)

T i = exp(−
i−1

∑
j=1

σ jδ j) (6)

where δi is the intervals between samples and N is the number of
the sampling points.

3.2 Visual Perceptual Sampling Strategy
In the foveated rendering technique, the most representative per-
ceptual models include visual acuity and contrast sensitivity mod-
els [29, 33], which describe the human visual system (HVS) en-
hanced perceptual sensitivity to areas close to the retinal center
and salient regions in the scene [34]. Existing works on NeRF ren-
dering acceleration [5] calculate importance weights wi for each
sample along the ray r, representing the contribution to the ray
color C(r), which is solely related to density. We calculate wi by:

wi = Ti(1− exp(−σiδi)) (7)

where Ti is the accumulated transmittance at point qi calculated
by Equation 6. Next, samples with wi below a threshold τ are
discarded, not accumulated into the final color C(r) to accelerate
the rendering process. τ is typically a predefined constant. We
propose a sampling strategy based on these two models of visual
perception, dividing the rendering process into two stages: (1)
Visual sampling rate map (VSR map) generation for current view.
(2) Visual perceptual sampling for final foveated image synthesis.
In the testing time, incorporating additional input from the user’s
gaze information, we use both visual acuity and contrast sensitivity

regions. To further enhance rendering performance and overall
perceptual quality, it is crucial to introduce visual perception based
on scene content into the radiance field rendering model.

In this paper, we propose VPRF, a novel foveated radiance field
representation method that integrates the visual acuity and con-
trast sensitivity models of HVS into the radiance field rendering
framework. This method leverages input from multi-view RGB
images and corresponding visual sensitivity images for end-to-end
optimization, aiming to efficiently achieve high perceptual quality
rendering results. First, VPRF is a view-dependent explicit voxel-
based representation method, where each voxel stores optimizable
feature vectors that encode the scene’s geometric, appearance, and
visual sensitivity information. This representation enables the vi-
sual sensitivity feature to be directly synthesized with novel views,
the same as the scene appearance. Second, we propose a visual per-
ceptual sampling strategy to improve the performance in radiance
field rendering. Unlike the Fov-NeRF approach, which is based on
network parameter quantity, our method controls the computational
resource allocation for each pixel by regulating the sampling rate
along each ray. Third, we propose a sampling weight-constrained
training scheme for VPRF, which has a new loss function to limit
the weight distribution of sampling points and ensure the effec-
tiveness of the sampling strategy to improve the representation
capability of the radiance field based on the scene content.

We compare our VPRF method with the state-of-the-art foveated
neural radiance fields method and other NeRF acceleration methods
on both real-world and synthetic datasets. Our method renders
more efficiently (about 83FPS), with higher PSNR and SSIM in
the foveal and salient regions. Compared to Plenoxels [3] and
AdaNeRF [5], the efficiency of our method is improved by 5.1-
13.1×, and the quality of synthesis in the foveal and salient regions
is also enhanced. Compared to the FoV-NeRF method [1], our
method achieves synthesis quality improvement in all regions.
And at equal or superior quality, the efficiency of our method is
improved by about 2.6×.

Figure 1 shows the comparison of the rendering results between
our method, the ground truth, and the FoV-NeRF method. The
foveal region is marked in green, and the salient region in the
periphery is marked in purple. Details in these two regions are
magnified on the right side. Our method achieves superior synthesis
quality in both the foveal region and the salient region in the
periphery. In the foveal region, we better preserve the details of
the clock dial and the foliage. In the salient region, FoV-NeRF
fails to retain the details of letters on the book spines and exhibits
noticeable aliasing. We also conduct a user study to evaluate our
method. The results show that the visual perceptual quality of our
method has significantly increased compared to other methods.

In summary, the main contributions of our method are as fol-
lows:

• A voxel-based visual perceptual foveated radiance fields rep-
resentation (VPRF). To the best of our knowledge, this is the
first time that a visual sensitivity model and a visual contrast
model have been combined into NeRF’s rendering framework
to improve computational efficiency.

• An adaptive sampling strategy based on visual perception
in the NeRF inference process, which allocates rendering
resources according to the HVS varying sensitivity across
different scene regions, further improving perceptual quality
and efficiency.

• A training scheme based on sampling weight constraints for
end-to-end learning of our representation, which constrains
the solution space of the scene geometry, provides support
for the line-of-sight of the sampling strategy described above.

2 RELATED WORK

In this section, we first introduce prior work related to foveated
rendering and then discuss existing methods for NeRF accelera-
tion. For a more exhaustive analysis of foveated rendering, we
recommend the readers refer to the reviews [7, 8].

2.1 Foveated Rendering
Providing high-quality content to each location within head-
mounted displays (HMD) is computationally expensive. Guenter et
al. [9] proposed the first foveated rendering framework, leveraging
a visual acuity fall-off model [10] to accelerate rendering perfor-
mance without sacrificing perceptual synthesis quality. It rendered
three nested image layers around the gaze point by rasterization,

reducing the sampling rate with increasing eccentricity and fus-
ing these layers into the final result through bilinear interpolation.
Meng et al. [11] introduced a two-pass kernel foveated rendering
pipeline that parameterizes foveated rendering by embedding poly-
nomial kernel functions in a classic log-polar mapping, rendering
results to a reduced resolution buffer and converting results back
to full-resolution screen space via inverse log-polar transformation
to output the final rendering results. Friston et al. [12] proposed a
pipeline that achieves foveated rendering through ray casting for
each fragment within a single rasterization process, overcoming
the limitations of warping concerning disocclusions, object mo-
tion and view-dependent shading, as well as geometric aliasing
artifacts. Tursun et al. [13] introduced a luminance contrast aware
foveated ray tracing technique, demonstrating that significantly
reducing the number of tracing rays is possible if the local spatial
luminance contrast sensitivity function (CSF) [14] is considered
in foveated rendering. Jindal et al. [15] proposed a variable-rate
shading pipeline to accelerate rasterization rendering performance.
They divided the full-resolution image into multiple 16×16 image
blocks, which can be rendered with a different ratio of shader exe-
cutions. Then, they adaptively adjust each image block’s shading
accuracy and refresh rate based on temporal and spatiotemporal
luminance CSF. Murphy et al. [16] proposed a hybrid technique
based on the visual acuity fall-off model and spatial CSF, utilizing
ray casting to sample the geometry of scenes.

Beyond traditional ray-tracing [17–19] and rasterization-based
foveated rendering [20, 21] methods, many researchers have con-
centrated on the application of deep learning in foveated rendering.
Surace et al. [22] proposed a training procedure for a generative
network designed for foveated image reconstruction. This proce-
dure penalizes perceptually significant deviations in the output to
preserve perceived over natural image statistics. Bauer et al. [23]
used a two-pass deep neural reconstruction network derived from
the W-Net model, which sparsely samples a volume around a fo-
cal point and reconstructs the full-resolution volumetric rendering
result using a deep neural network. To further enhance the per-
formance of foveated rendering, Kaplanyan et al. [24] utilized
Generative Adversarial Networks (GANs) [25] to reconstruct pe-
ripheral regions, improving the peripheral rendering quality in
foveated videos. This method reconstructs a plausible peripheral
video from a small fraction of pixels provided in every frame by
finding the closest matching video to this sparse input stream of
pixels on the learned manifold of natural videos. However, con-
ventional foveated rendering methods depend on 3D resources to
reconstruct scene contents, and acquiring these resources in the
real world often involves noise, which introduces challenges in
presenting complex scene contents from a novel view in VR.

2.2 Neural Radiance Fields and Acceleration

To reconstruct 3D scenes and synthesize novel view images, the
development of Neural radiance fields (NeRF) [2] has attracted
extensive attention. NeRF uses fully connected neural networks
to represent 3D scenes as an implicit function and optimizes it
through differentiable volume rendering. It can recover the geome-
try and appearance information of a scene from input multi-view
2D images, training the network and rendering novel view images
by sampling points in 3D space through ray marching. Although
NeRF has achieved realistic synthesis quality, the rendering speed
is considerably slow, which limits its practical applications.

To accelerate NeRF rendering, recent works [26–30] utilize
explicit voxel grids to store the radiance and other features of a
scene, avoiding the intensive inference of MLP during runtime.
Hedman et al. [28] constructed a sparse 3D voxel grid to store
the learned opacity, diffuse color, and view-dependent effects fea-
ture generated by a pre-trained NeRF. It accelerates the rendering
performance by directly querying the voxel grid in the testing
process. Yu et al. [26] proposed NeRF-SH, which uses the same
optimization and volume rendering method as the original NeRF,
predicts the spherical harmonics (SH) coefficients instead of color
for each sampling point. These coefficients are used to synthesize
view-dependent colors without the need for additional network
inference. Finally, the SH coefficients and opacity are baked into a
sparse voxel-based octree for real-time rendering. However, these
methods even lengthen the overall training time by extracting fea-
tures from a pre-trained NeRF and then baking them into explicit
data structures. Yu et al. [3] proposed Plenoxels, which directly
optimize the SH coefficients stored in the feature grid, achieving
comparable rendering results to NeRF in only tens of minutes of Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 12,2024 at 13:24:05 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2: The overview of VPRF method.

models to guide sampling, whereas in the training time, due to the
absence of gaze information, only the contrast sensitivity model is
used.

3.2.1 Visual Sampling Rate Map Generation
Definition Visual sampling rate map is a two-dimensional map of
the same size as the input image, in which the value of each pixel
represents the sampling rate P([0,1]) of the corresponding ray. The
sampling rate P is calculated based on the visual sensitivity of the
scene corresponding to the current pixel position. A higher P value
indicates that we conduct dense sampling along the ray, whereas a
lower value results in sparse sampling.
Generation To generate the VSR map, there are three steps as
follows.
Step 1. Construct Visual Acuity Map.
The visual perception model is represented as a visual acuity map,
in which the pixel value V ([0,1]) indicates the user’s visual acuity,
calculated based on the gaze point. In the testing time, given a 2D
gaze point g, the acuity V for the pixel p is calculated as:

V = ω0 +m · e(p,g) (8)

where ω0 represents the visual acuity limit at the gaze position,
m represents the acuity slope, and e is the eccentricity function
calculated based on p and g.
Step 2. Construct Visual Sensitivity Map.
The contrast sensitivity model is represented as a visual sensitivity
map(VS map), in which the value S([0,1]) indicates the sensitivity
of HVS at this pixel. For single-image saliency detection, Yue et
al. [35] proposed a co-saliency detection method that combines top-
down and bottom-up approaches, where the backbone network is
employed for co-saliency map prediction, and two branch networks
are utilized to enhance the network’s sensitivity to co-salient re-
gions. Zhou et al. [36] introduced a hierarchical network structure
that explores the role of foreground and background information in
generating saliency maps. Our VS map is generated by employing
the spatial contrast sensitivity function (CSF) to detect edges and
salient features. Specifically, we consider areas that exceed the
threshold of the spatial frequency function as significant areas, uti-
lizing relative values of the spatial CSF rather than absolute values
to indicate areas sensitive to the user.

Before training, we extract the VS map corresponding to each in-
put image as the ground truth S for the predicted sensitivity feature
Ŝ, which is used to supervise the optimization of visual sensitivity
grid Gs. In the training and testing time, for each sampling ray,
Gs and density grid Gσ are sampled at uniform intervals, and the
sensitivity value si and density di for each sample are calculated
as mentioned in Section 3.1. Subsequently, through Equation 5.
we compute the predicted sensitivity Ŝ. To maintain the real-time
performance of the entire rendering process, we first generate a
low-resolution VS map for the current view, then upsample it using
bilinear interpolation to restore the VS map to the same resolution
as the output image. This ensures a one-to-one correspondence
between each pixel on the VS map and each ray in the image syn-
thesis stage.
Step 3. Generate Visual Sampling Rate Map.
Based on the visual acuity map and VS map, we calculate the final
sampling rate P = max(V,S), referring to [20]. Next, P guides the
sampling process of the ray during the image synthesis stage.

3.2.2 Visual Perceptual Sampling

During the sampling process, there are three important control pa-
rameters: the importance weight threshold, the number of sampling
points and the ray marching step size. In existing NeRF accelera-
tion methods [3, 5, 29], these parameters are typically predefined
as constant values, uniformly accelerating across the overall image
space. These methods neglect the characteristics of HVS: higher
density samples are required in regions with high visual sensitivity,
while fewer are needed elsewhere. To overcome this limitation,
we propose using the value in each pixel of the VSR map to guide
the computation of these three parameters during the sampling
process, thereby allocating computational resources according to
the sensitivity levels of HVS. Specifically, given sampled ray ri,
we first get the sampling rate Pi from the VSR map. This process
is comprised of three components.
Adaptive Importance Weights Threshold This parameter con-
trols the threshold for filtering sampling points. Since the density
grid Gσ has already been sampled during the visual perception
stage, we have acquired coarse geometric information about the
scene. For ray rk at that stage, we additionally record the max-
imum w among all samples as wk

max, which is upsampled along
with the predicted sensitivity feature Ŝ(rk) and stored in another
channel of VS map. Assume that after upsampling, the pixel value
wi

max corresponding to pixel pi approximates the actual maximum
importance weight of samples on ri:

wi
max = pixel(ri)≈ wi,t , t = argmax

j∈[1,N]
(
∥∥w j

∥∥) (9)

where wi,t indicates importance weight of the t-th sampling point
along the ray ri. The threshold τi for ri is defined as:

τi = wi
max · (1−Pi) (10)

Next, we sample the density grid Gσ once again, for each point
qi, j along ri, calculating the importance weight wi, j. Only points
where wi, j > τi are sampled on the color grid Gc, and calculate
the view-dependent color ci, j through Equation 2. By reducing
unnecessary color synthesis, the performance of image rendering
is improved.
Sample Count Limitation This parameter controls the range of
sample numbers. We limit the maximum number of allowed sam-
ples between [Nmin,Nmax]. The maximum sample count Ni for ri
is calculates based on the sampling rate Pi as:

Ni = ⌈Pi · (Nmax −Nmin)⌉+Nmin (11)

where ⌈⌉ is an upward rounding operation. When the number of
samples exceeding τi surpasses Ni, we terminate the sampling pro-
cess prematurely.
Adaptive Ray Marching Step This parameter controls each step
size of ray marching. When wi, j > τi, it indicates that the current
point qi, j contributes significantly to the final color Ĉ(ri). In prac-
tice, these points are mostly distributed on the surface, and we only
need to focus on them with visible rays. Therefore, we adopt a
conservative marching step to encourage sampling near the surface.
Otherwise, an aggressive marching step will be used to encourageAuthorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 12,2024 at 13:24:05 UTC from IEEE Xplore.  Restrictions apply. 
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skip empty voxels to reach the surface or boundary quickly. The
next step, j → j+1, is calculated by Equation 12.

ST EPj→ j+1 = ST EPbase · e
β ·(1− wi, j

τi
) (12)

where ST EPbase is a predefined initial step size, and β is a hyper-
parameter.

3.3 Sampling Weight Constrained Training Scheme
Just using RGB images and extracted visual sensitivity maps to
supervise the training process does not guarantee that the opti-
mized scene geometry meets our sampling strategy. The weight
threshold τ calculated in Equation 10 may filter out an excessive or
insufficient number of sampling points, which results in artifacts
in rendered results and a decrease in performance respectively. To
address this problem, we introduce a sampling weight-constrained
training scheme for VPRF. Our training scheme optimizes the fea-
ture vectors in Gσ , Gs and Gc end-to-end. We prioritize optimizing
the geometry appearance features of the scene to provide an initial
estimate of the scene. Gradually, we optimize the visual sensitivity
features, which means that the number of samples required for
each ray will progressively decrease as training progresses. We
introduce a new importance weight constraint loss, forcing the
distribution of learned density in the scene to meet the filtering
criteria of threshold τ .

In addition, we generate VS maps at the same size as the input
images rather than a low-resolution version. We need to perform
dense sampling on the voxel grid, thereby removing the limitations
on the number of samples and adopting a uniform step size instead
of an adaptive one. This training scheme concentrates predictive ca-
pabilities on samples with actual contributions, thereby enhancing
the representation of the radiance field based on the scene content.
The entire training scheme is implemented using the following
three loss functions.
Photometric Loss Given the ground truth for color, we also cal-
culate the Mean Squared Error (MSE) loss between the rendered
color Ĉ(r) and the ground truth color C(r). Moreover, we propose
the sensitivity mask by multiplying C(r) with the color’s MSE.
This approach strengthens the constraint on the color in salient re-
gions, enabling the model to concentrate its capabilities on actually
salient areas. The photometric loss is used to optimize the density
and color spherical harmonics coefficients, defined as:

Lphotometric = S(r) · ∑
r∈R

∥∥Ĉ(r)−C(r)
∥∥2

2 (13)

Visual Perception Loss Given an input RGB image, the ground
truth for the VS map is extracted using the method mentioned in
Section 3.2.1, then calculate the MSE loss between the predicted
sensitivity feature Ŝ(r) and the ground truth S(r). The visual
perception loss is defined as:

Lviusal = (1−α) ∑
r∈R

∥∥Ŝ(r)−1
∥∥2

2 +α ∑
r∈R

∥∥Ŝ(r)−S(r)
∥∥2

2 (14)

where α = e−β ·(1− current_epoch
t arget_epoch ) (15)

where R is a batch of ray samples and β is a hyperparameter
that adjusts the balance factor α during training progresses. At the
initial training phase, we force all predictions towards 1, which
means that the sampling rate P for all rays is set to 1, without
discarding any sampling points. This encourages the model to
optimize an initial estimate of colors and geometry rather than
visual perception, preventing the entire optimization process from
collapsing due to an insufficient number of sampling points in
the early stages of training. We apply the visual perception loss
to supervise the training, optimizing the density and sensitivity
spherical harmonics coefficients.
Importance Weight Constraint Loss For a ray with a sampling
rate of P (during training P = S), assuming the number of sampling
points is N, our goal is to select the top N ·P points with the highest
importance weights w. However, the cost of sorting is expensive.
To ensure that the threshold τ calculated by Equation 10 satisfies
the selection criteria above, we constrain w of sampling points.
Specifically, during training, we can accurately get the maximum
importance weights wmax along the ray, combined with P and
calculate the threshold τ . The importance weight constraint loss is
defined as follows:

Lweight = ∑
r∈R

∥∥∥∥∥
1
N
·

N

∑
i=1

f (wi,τ)−S(r)

∥∥∥∥∥
1

(16)

f (wi,τ) =
1

1+ e−k·(wi−τ) (17)

where f (·) is a sigmoid function, which simulates the filtering
process in a differentiable form, enabling gradient backpropagation:
f (w,τ) approaches 0 when w < τ , and approaches 1 when w > τ .
k is a hyperparameter that controls the rate of change around w = τ .
This loss ensures that the distribution of w among the sampling
points satisfies N : Nw>τ = 1 : P.

Finally, the total loss used for training VPRF is the combination
of the above three losses:

Lall = λ1Lphotometric +λ2Lvisual +λ3Lweight (18)

where λ is the balance weight.

4 EVALUATION

In this section, we first provide a detailed description of our ex-
perimental settings, including the datasets, the specific parameters
of the model optimization, and the hardware environments de-
ployed. Subsequently, we conduct both qualitative and quantitative
analyses of our experimental results.

4.1 Implementation
Datasets We evaluated the quality and performance of our method
for foveated image synthesis on the Real Forward-Facing(LLFF)
dataset [37] and FoV-NeRF dataset [1]. The LLFF dataset com-
prises 8 complex real-world physical scenes captured using hand-
held cameras, with a resolution of 1008× 756. The FoV-NeRF
dataset is a synthetic dataset that has both indoor and outdoor
scenes. Each scene is accompanied by a periphery and a foveal
dataset, both with resolutions of 400×400. For the forward data
of real scenes, we sample in normalized device coordinates [2].
We follow the same training and test dataset splits as the original
NeRF.
Implementation Details In all experiments, we set the loss weights
as λ1 = 0.5, λ2 = 0.5, and λ3 = 0.015 and use the RMSProp op-
timizer to train our model. We train our VPRF with 10 epochs, a
total of 128,000 iterations each, with a batch size of 4,096 rays. We
set a learning rate of SH coefficients to exponential decay, starting
from 0.01 and decaying to 5×10−5 after 250,000 iterations. The
volumetric density σ employs a delayed exponential update, de-
caying to 0.05 during 250,000 iterations. Our voxel grid resolution
is initially set at (256, 256, 128), progressively upsampling to (512,
512, 128) and (900, 900, 256) after every 25,600 iterations. The
base step size for sampling along rays, denoted as ST EPbase in
Equation 12, is set at 0.5. For Visual Perception Loss (Equation
14), we adopt β = 8 and target_epoch = 10. For Photometric Loss,
we utilize k = 50. For the visual acuity parameters in Equation 8,
refer to Guenter et al. [9], we set ω0 = 1/48◦ and m = 0.0275. In
the VS map, we define regions where pixel values S exceed 0.4 as
salient, which are used for calculating various metrics of salient
regions in subsequent experiments. To ensure a fair comparison,
monocular images are rendered for all methods. All our experi-
ments are performed on a graphics workstation with a 3.8 GHz
Intel(R) Core(TM) i7-10700KF CPU, 64 GB of memory, and an
NVIDIA GeForce GTX 3090 graphics card.

4.2 Comparison
We compare our proposed VPRF method with the state-of-the-
art method of foveated rendering, FoV-NeRF [1], and two NeRF
accelerated methods for improving sampling efficiency, Plenoxels
[3] and AdaNeRF [5]. For the Plenoxels method, we set the same
grid resolution as Ours, with the sampling step size set at 0.5.
For AdaNeRF and FoV-NeRF, we utilize the optimal parameters
reported in their papers.

4.2.1 Quality
Figure 3 shows a comparison on two synthesized scenes,
Classroom, and Barbershop, between foveated images synthe-
sized by our method (column 1 & 3) and FoV-NeRF (column 4)
compared with the ground truth (column 2). We adopt a trade-
off approach (about 8 samples per ray) for experimentation. In
the images, purple squares indicate the foveal regions and green
squares indicate the salient regions in the periphery. Details of the
magnified foveal and salient regions are presented on the right of
each rendering image for comparison.

Our rendering results are more similar to the ground truth com-
pared to FoV-NeRF, preserving better details in both the fovealAuthorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 12,2024 at 13:24:05 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3: Comparison of the rendered images with our VPRF method and FoV-NeRF.

region and salient region in the periphery. In Classroom and
Barbershop Scene, for the foveal regions, our method enables the
clear synthesis of characters on boards around the clock, the con-
tours of the sculpture’s head and the sconce, while those rendered
by FoV-NeRF are blurred. This is because of our voxel-based repre-
sentation method and dense sampling in the foveal regions, which
further enhances the synthetic quality. Conversely, the MLP-based
FoV-NeRF method can only process a fixed number of sampling
points. For the salient regions in the periphery, our method ren-
ders the edges of chairs and desks more distinctly and the content
within the paintings can be clearly recognized, while those ren-
dered by FoV-NeRF are blurred and have significant serrations.
This is because to accelerate rendering, FoV-NeRF maintains a
rendering resolution of 400×400 in the peripheral regions, leading
to information loss during the upsampling process to 800× 800.
Our method accelerates rendering by adjusting the sampling rates
in different regions, rendering a resolution of 800×800 foveated
image directly, without the need for additional upsampling.

Figure 5 shows a comparison on four real forward-facing scenes,
Horns, Flowers, Trex and Fern, the foveated images synthesized
by our method (Ours about 8 samples, column 2), Plenoxels (col-
umn 2), AdaNeRF (about 8 samples, column 3), and the real
photos (ground truth, GT, column 1). Details in the foveal and
salient regions are similarly magnified for comparison. Our re-
sults show a higher similarity to the ground truth, with clearer
details both in the foveal regions and the salient regions in the
periphery, while the comparison methods exhibit varying degrees
of blurriness and artifacts in the rectangular regions. This is at-
tributed to our method predicting higher and accurate sensitivity
values at the salient regions, as shown in Figure 4. Therefore, we
allocate more computational resources to these regions, enhancing
the synthetic quality. Conversely, other methods uniformly dis-
tribute computational resources across the overall image. This also
demonstrates the effectiveness of our visual perceptual sampling
strategy, achieving foveated rendering for the radiance field.

We use peak signal-to-noise ratio (PSNR) and structure similar-
ity index measure (SSIM) to quantitatively evaluate the synthesis
quality. To validate the effectiveness of foveated rendering, we

(a) (b)

Fig. 4: Visualizing the visual sensitivity map extracted from the
original RGB image (a) and generated by our method (b). Our
method predicts higher sensitivity for the cracks on the horns and
the skull model on the right side, which aligns with the actual results.

partition the image space into four regions for quality evaluation:
foveal, salient, overall, and peripheral region, and compute PSNR
and SSIM for each region. Table 1 presents a comparative anal-
ysis of PSNR and SSIM in different regions on the FoV-NeRF
dataset between our method and FoV-NeRF. To achieve varying
levels of synthesis quality, our method adjusts the average sample
count N = [4,8,12], whereas FoV-NeRF increases network com-
plexity. The results of our VPRF method have higher PSNR and
SSIM across all evaluated regions, which indicates that our method
achieves better synthesis quality with similar time performance.
Specifically, compared with FoV-NeRF, (PSNR, SSIM) of our
method is (1.37×,1.22×) in the overall region, (1.34×,1.17×)
in the foveal region, (1.40×,1.26×) in the peripheral region, and
(1.69×,1.40×) in the salient region. Moreover, when the PSNR
exceeds 30dB, the HVS can hardly perceive the difference between
the synthesized images and the ground truth. Our method sur-
passes this threshold in both foveal and salient regions, indicating
no perceptible between our synthesized images and the ground
truth images in these regions.

Tables 2 shows the comparison of PSNR and SSIM across dif-
ferent regions of our VPRF method and other NeRF acceleration
methods on LLFF datasets. Both our VPRF method and AdaNeRF
involve controlling the samples count along the ray, thus consider-Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 12,2024 at 13:24:05 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5: Comparison of the rendered images with our VPRF method and the previous NeRF accelerated methods on LLFF dataset [37]

ing the trade-off between quality and performance, we set various
average numbers of samples, N = [4,8,12] as well for comparison.
For the foveal region, all PSNR and SSIM computed by our method
are higher than all comparison methods. For the salient regions in
the periphery, except for the SSIM of ours-4, which falls behind
Plenoxels, all other metrics are higher than the comparison meth-
ods. Compared to AdaNeRF, across various parameter settings,
our method achieves superior quality in foveal and salient regions
while achieving notable speed improvement. Particularly, at the
highest quality setting (about 12 samples), PSNR and SSIM of our
method are 1.15× higher and 1.13× higher in the foveal region,
and 1.13× higher and 1.10× higher in the salient region than those
of AdaNeRF. Compared to Plenoxels, at the fastest setting (about
4 samples), our method achieves comparable quality in foveal and
salient regions. At the highest quality setting, PSNR and SSIM
of our method are 1.13× higher and 1.08× higher in the foveal
region, and 1.09× higher and 1.02× higher in the salient region
than those of Plenoxels. For the overall and peripheral regions,
our method achieves higher PSNR and SSIM compared to AdaN-
eRF across various parameter settings. And with the rendering
performance is about 6.4×, PSNR and SSIM of our method are

only slightly lower than those of Plenoxels. This is because we
allocate more computational resources to the foveal and salient
regions, sacrificing slightly the synthesis quality in the non-salient
peripheral regions to significantly improve overall rendering per-
formance. Totally, considering run-time efficiency, our method
shows an optimal trade-off, allowing us to choose between fast
rendering (about 4 samples) and high quality (about 12 samples).

4.2.2 Performance

Rendering Speed The last column ("Performance") of Table 1
and Table 2 show the performance comparison between our VPRF
and other methods with different synthesis quality. Compared to
FoV-NeRF, experimental results indicate that across all regions
with equal PSNR, our method achieves superior time consumption.
At equal or superior quality, our method enhances performance
by about 2.6×. We utilize a voxel-based approach combined with
a sampling strategy to accelerate rendering. Moreover, the pro-
posed VPRF representation leverages scene content to enhance the
prediction capabilities for salient regions. Ultimately, our method
significantly outperforms FoV-NeRF in both synthesis quality and
performance.

Fig. 3: Comparison of the rendered images with our VPRF method and FoV-NeRF.

region and salient region in the periphery. In Classroom and
Barbershop Scene, for the foveal regions, our method enables the
clear synthesis of characters on boards around the clock, the con-
tours of the sculpture’s head and the sconce, while those rendered
by FoV-NeRF are blurred. This is because of our voxel-based repre-
sentation method and dense sampling in the foveal regions, which
further enhances the synthetic quality. Conversely, the MLP-based
FoV-NeRF method can only process a fixed number of sampling
points. For the salient regions in the periphery, our method ren-
ders the edges of chairs and desks more distinctly and the content
within the paintings can be clearly recognized, while those ren-
dered by FoV-NeRF are blurred and have significant serrations.
This is because to accelerate rendering, FoV-NeRF maintains a
rendering resolution of 400×400 in the peripheral regions, leading
to information loss during the upsampling process to 800× 800.
Our method accelerates rendering by adjusting the sampling rates
in different regions, rendering a resolution of 800×800 foveated
image directly, without the need for additional upsampling.

Figure 5 shows a comparison on four real forward-facing scenes,
Horns, Flowers, Trex and Fern, the foveated images synthesized
by our method (Ours about 8 samples, column 2), Plenoxels (col-
umn 2), AdaNeRF (about 8 samples, column 3), and the real
photos (ground truth, GT, column 1). Details in the foveal and
salient regions are similarly magnified for comparison. Our re-
sults show a higher similarity to the ground truth, with clearer
details both in the foveal regions and the salient regions in the
periphery, while the comparison methods exhibit varying degrees
of blurriness and artifacts in the rectangular regions. This is at-
tributed to our method predicting higher and accurate sensitivity
values at the salient regions, as shown in Figure 4. Therefore, we
allocate more computational resources to these regions, enhancing
the synthetic quality. Conversely, other methods uniformly dis-
tribute computational resources across the overall image. This also
demonstrates the effectiveness of our visual perceptual sampling
strategy, achieving foveated rendering for the radiance field.

We use peak signal-to-noise ratio (PSNR) and structure similar-
ity index measure (SSIM) to quantitatively evaluate the synthesis
quality. To validate the effectiveness of foveated rendering, we
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Fig. 4: Visualizing the visual sensitivity map extracted from the
original RGB image (a) and generated by our method (b). Our
method predicts higher sensitivity for the cracks on the horns and
the skull model on the right side, which aligns with the actual results.

partition the image space into four regions for quality evaluation:
foveal, salient, overall, and peripheral region, and compute PSNR
and SSIM for each region. Table 1 presents a comparative anal-
ysis of PSNR and SSIM in different regions on the FoV-NeRF
dataset between our method and FoV-NeRF. To achieve varying
levels of synthesis quality, our method adjusts the average sample
count N = [4,8,12], whereas FoV-NeRF increases network com-
plexity. The results of our VPRF method have higher PSNR and
SSIM across all evaluated regions, which indicates that our method
achieves better synthesis quality with similar time performance.
Specifically, compared with FoV-NeRF, (PSNR, SSIM) of our
method is (1.37×,1.22×) in the overall region, (1.34×,1.17×)
in the foveal region, (1.40×,1.26×) in the peripheral region, and
(1.69×,1.40×) in the salient region. Moreover, when the PSNR
exceeds 30dB, the HVS can hardly perceive the difference between
the synthesized images and the ground truth. Our method sur-
passes this threshold in both foveal and salient regions, indicating
no perceptible between our synthesized images and the ground
truth images in these regions.

Tables 2 shows the comparison of PSNR and SSIM across dif-
ferent regions of our VPRF method and other NeRF acceleration
methods on LLFF datasets. Both our VPRF method and AdaNeRF
involve controlling the samples count along the ray, thus consider- Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 12,2024 at 13:24:05 UTC from IEEE Xplore.  Restrictions apply. 
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Table 1: Quantitative comparison between our VPRF method and FoV-NeRF on FoV-NeRF Dataset [1]

Overall Foveal Peri Salient Performance
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM FPS Speedup
Ours-4 22.34 0.73 25.28 0.82 22.29 0.73 24.88 0.81 76

-Ours-8 26.52 0.85 33.86 0.95 26.41 0.85 31.03 0.92 31
Ours-12 27.03 0.86 35.59 0.96 26.91 0.86 33.27 0.93 23
FoV-NeRF-S 15.34 0.54 21.79 0.72 14.93 0.52 15.17 0.54 63

∼ 2.6×FoV-NeRF-M 19.25 0.69 25.10 0.81 18.86 0.68 18.33 0.65 29
FoV-NeRF-L 20.48 0.71 25.87 0.83 20.15 0.71 19.86 0.70 17

Table 2: Quantitative comparison between our VPRF method and other NeRF acceleration methods on LLFF Dataset [37]

Overall Foveal Peri Salient Performance
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM FPS Speedup
Ours-4 24.48 0.76 25.93 0.87 24.42 0.76 27.60 0.87 83

-Ours-8 25.27 0.79 28.38 0.90 25.22 0.79 29.06 0.89 56
Ours-12 26.08 0.82 29.20 0.90 25.97 0.82 29.21 0.90 45
AdaNeRF-4 24.37 0.76 24.01 0.75 24.39 0.76 24.53 0.77 16

5.1 ∼ 7.2×AdaNeRF-8 25.02 0.78 24.82 0.77 25.15 0.79 25.31 0.78 9
AdaNeRF-12 25.91 0.81 25.35 0.80 25.90 0.82 25.89 0.82 6
Plenoxels 26.40 0.84 25.74 0.83 26.65 0.85 26.87 0.88 7 6.4 ∼ 13.1×

Compared to other NeRF acceleration methods, our method
achieves the highest rendering speed about 83 FPS, without sac-
rificing perceptual quality. Specifically, compared to Plenoxels,
our method achieves 11.2-13.1× acceleration (about 4 samples)
with similar quality in foveal and salient regions, and 6.4-8.6×
acceleration (about 12 samples) with similar quality in periph-
eral and overall regions, but with superior quality in foveal and
salient regions. This significant acceleration is attributed to our
visual perceptual based sampling strategy, which efficiently fil-
ters for critical sampling points and allocates varying numbers
of sampling points across different regions, leading to a massive
speedup. Compared to AdaNeRF, our method achieves higher
performance at approximately the same sample count. Specifically,
at equivalent rendering performance levels, our method surpasses
AdaNeRF in rendering quality across all regions. At equal or supe-
rior quality, our method enhances performance by 5.1-7.2×. This
is attributed to our method utilizing the voxel-based scene repre-
sentation, which avoids the substantial computational overhead
associated with densely inferring implicit MLPs during runtime.

Table 3 shows the time cost for the individual step of synthe-
sizing novel view foveated images using our method. The result
illustrates that our upsampled VS map generation approach ex-
hibits only minor overheads, with the computational bottleneck of
the whole pipeline remaining at the stage of RGB image generation.
This also indicates that our method is effective, which involves
generating the VSR map with additional time to accelerate the
synthesis process of RGB images.

Table 3: Time Proportion for the main stages of our VPRF method

Step Time Proportion
Visual sampling rate map generation 17.4%
Visual perceptual sampling 9.5%
Final image synthesis 72.1%

Memory Consumption The entire model of our VPRF repre-
sentation requires approximately 600MB of storage, with visual
sensitivity information occupying only 28MB. This reduction is
attributed to our method employs a voxel pruning strategy similar
to Plenoxels during the training process. We applied a threshold
to prune empty voxels that do not contain object and introduced a
sparsity prior, encouraging the model to select empty voxels, fur-
ther saving memory without reducing image quality. Compared to
other methods based on explicit structures, we only store additional
single-channel visual sensitivity information, which imposes little
pressure on memory.

4.3 Ablation Studies

In this section, we conduct ablation studies to validate the efficiency
of our importance weight constraint loss on synthesis quality and

the visual perceptual sampling strategy on performance.
Quality related Ablation The effect of the weight constraint loss
depends on the adoption of our visual perceptual sampling strategy.
Figure 6 visualizes the results of a qualitative comparison of synthe-
sis quality across four scenarios. The comparison results between
6(a) and 6(b) indicate that directly adding weight constraint loss
does not detrimentally affect the synthesis quality. This is because
the weight constraint loss encourages the model to optimize den-
sity by choosing solutions that satisfy the constraints rather than
random distributions. The comparison results between 6(a) and
6(c) show that solely employing the visual perceptual sampling
strategy leads to synthesis artifacts such as blurring and occlusion
error. This is because the absence of constraints on the distribution
of importance weights, falsely filters out sampling points on the
surfaces of foreground objects, which leads to occluded objects
being rendered. 6(d) shows the high-quality synthesis result of
our full method, demonstrating that the importance of weight con-
straint loss ensures the effectiveness of our sampling strategy.
Performance related Ablation The main components that influ-
ence the performance of our method are: sample count limitation,
adaptive ray marching step and adaptive importance weights thresh-
old for filtering samples Table 4 shows the ablation of our sampling
strategy, in comparison with None. The results indicate that each
component contributes to varying degrees of improvement in per-
formance, with our full method achieving a high performance of
83FPS. Without the sample count limitation, computational costs
will significantly increase. This is because beyond a certain count,
additional samples hardly improve the image quality. Without the
adaptive ray marching step, it will prolong the duration rays spend
marching through empty voxels, reducing the speed to reach the
surface. Without the adaptive importance weights threshold, it will
result in excessive sampling in regions with low visual sensitivity,
reducing rendering performance without substantially enhancing
the perceptual quality of the final image.
Hyperparameter Ablation For Equation 18, Lweight serves only
as a constraint term, similar to other regularization terms. We ex-
perimented with a range of values [0.005,0.04] for the λ of Lweight
and determined the best-performing values through testing, the
results are presented in Table 5.

Table 4: Performance Ablation study

Method
Performance

[FPS]
Our full method 83
w/o sample count limitation 23
w/o adaptive ray marching step 58
w/o adaptive importance weights threshold 41
None 7
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(a) None (b) weight constraint only

(c) sampling strategy only (d) Full

Fig. 6: Qualitative comparison for quality related ablation. Our full
method eliminates artifacts and occlusion errors while filtering out
sampling points with low contributions to the final color for rendering
acceleration.

Table 5: On the Horns scene of the LLFF dataset, the foveated
rendering results of our method training with various lambda values

Hyperparameter tuning
λ of Lweight 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

PSNR ↑ 25.98 26.54 27.30 26.73 26.56 26.12 25.85 25.33

5 USER STUDY

We design a within-subject study to evaluate the perceptual synthe-
sis quality on the FoV-NeRF dataset [1] of our method compared
with the previous method.
Participants and Setup We recruited 14 participants (7 males and
7 females, aged between 21-30 years), all of whom had experience
using VR HMDs and had normal vision. Each participant wore an
HTC Cosmos headset for the experiment.
Conditions The conditions included: the full-quality ground truth
rendering results (GT ), our method (Ours), FoV-NeRF, and Plenox-
els. FoV-NeRF set the optimal parameters reported in their paper,
and the common parameters between Plenoxels and Ours are kept
consistent.
Task To ensure precise and fair comparisons, we fixed the view mo-
tion of the observation camera. Referring to the setup in FoV-NeRF,
to avoid perceptual differences caused by varying gaze movements
between individual trials, we enforced static gaze points in each
method instead of free viewing. We used four test scenes from
the FoV-NeRF dataset: barbershop, classroom, lobby and stones.
For each scene, we generated an 8s animation sequence for each
condition. Initially, we presented the GT animation sequence to
the participants, informing them that this was the benchmark re-
sult. Subsequently, we displayed the animation results generated
by Ours, GT , FoV-NeRF and Plenoxels from the same camera
perspective in a random order, asking participants to rate the vi-
sual perceptual quality of each animation sequence. The viewing
counts for all methods in the experiment were kept balanced. The
visual perceptual quality rating included 5 confidence levels, with
5 indicating the highest quality (no perceptible artifacts) and 1 the
lowest quality (noticeable artifacts perceptible). To mitigate the
effects of visual fatigue, after completing the ratings, participants
are given a 10 second rest before proceeding to the next animation.
Results Figure 7 shows the average score across all scenes for
different conditions, utilizing the p-value and Cohen′sd to estimate
the differences between the comparison conditions and Ours. The
results indicate a significant improvement in our average score
compared to both FoV-NeRF and Plenoxels, which is closest to
the GT. The p-value = 0.19 of scores between Ours and GT , with
Cohen′sd = 0.43, indicating a small effect size. This suggests
that our method has statistically perceptual similarity with the
ground truth. The p-value < 0.001 of scores between Ours and
FoV-NeRF, with Cohen′sd = 2.33, indicating a huge effect size.
The p-value < 0.001 of scores between Ours and Plenoxels, with
Cohen′sd = 1.99, indicating a verylarge effect size. These re-

Fig. 7: The user’s average scores and standard deviations for all
conditions in our evaluation experiment.

sults demonstrate that compared to other methods, our method
significantly enhances the visual perceptual quality of synthesized
foveated images. This is because our method allocates more com-
putational resources to both the foveal regions and the salient
regions in the periphery.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

We have proposed a new visual perceptual radiance fields repre-
sentation method, named VPRF, which integrates the HVS visual
acuity and contrast sensitivity models into the radiance field ren-
dering framework and can efficiently synthesize high-quality novel
view foveated images at about 83FPS. We encode not only the
scene appearance but also the visual sensitivity of the HVS to scene
content. These encoded features are stored in our feature grid. For
runtime rendering, we initially synthesize a visual sampling rate
map for current view based on the sensitivity information, which
is used to allocate rendering resources for different regions during
appearance synthesis. We propose a visual perceptual sampling
strategy that guides the sampling process based on the sampling
rate associated with each ray to render the final foveated image ef-
ficiently. We also ensure the effectiveness of our sampling strategy
by adding importance weight constraints to restrict the geometric
distribution of the scene. We validate our method on both real
and synthetic datasets, and the experimental results show that our
method achieves superior synthesis quality in foveal and salient
regions with significant acceleration. User study also demonstrates
that our method significantly improves visual perceptual quality.

While our method achieves superior rendering performance and
perceptual quality, there remain certain limitations. Firstly, in com-
parison to MLP-based methods, the explicit voxel grid consumes
large memory during runtime, which indicates that the represen-
tation capacity is constrained by the grid resolution. A recent
study [38] proposes factorizing the voxel into multiple compact
low-rank tensor components. K-Planes [39] projects spatial points
onto planes, utilizing d planes to represent a d-dimensional scene.
These methods could potentially reduce the memory storage gap
between pure MLP-based methods while retaining the advantages
of explicit structures. Therefore, potential future work is needed
to extend our voxel-based representation to these storage-efficient
approaches. Secondly, our method does not incorporate the tempo-
ral information of the scene. Thus, it cannot synthesize foveated
images for dynamic environments. In the future, we plan to model
the radiance field based on temporal information and the percep-
tual characteristics of the HVS towards moving objects, enabling
the synthesis of novel view foveated images in dynamic scenes.
Furthermore, if the current frame rate is accessible, our method can
dynamically adjust the sampling rate to meet a certain frame rate
by incorporating simple strategies. Specifically, when the current
frame rate does not meet the target, our method can reduce the
number of sampling points less in the foveal and salient areas,
and more in other areas. This allows us to maintain high visual
perception quality in critical areas while improving the rendering
frame rate. When the current frame rate exceeds the target, our
method can increase the number of sampling points in the foveal
and salient areas to enhance the rendering quality in these areas.
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