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Fig. 1: Illustration of the proposed audio-visual aware foveated rendering method (AvFR). In a VR scene containing auditory content,
AvFR extracts auditory and visual features (a, left) and generates an optimized foveated rendering result (a, middle) based on the
extracted features to accelerate rendering performance while preserving visual fidelity compared to the state-of-the-art foveated
rendering method (FR) shown in (a, right) for VR head-mounted displays [26]. The time cost comparison between AvFR (b, bottom)
and FR (b, top) shows that AvFR achieves a 1.3× speedup compared to FR, which indicates that AvFR significantly improves foveated
rendering performance in VR scenes containing auditory content.

Abstract—With the increasing complexity of geometry and rendering effects in virtual reality (VR) scenes, existing foveated rendering
methods for VR head-mounted displays (HMDs) struggle to meet users’ demands for VR scene rendering with high frame rates
(≥ 60 f ps for rendering binocular foveated images in VR scenes containing over 50M triangles). Current research validates that auditory
content affects the perception of the human visual system (HVS). However, existing foveated rendering methods primarily model the
HVS’s eccentricity-dependent visual perception ability on the visual content in VR while ignoring the impact of auditory content on
the HVS’s visual perception. In this paper, we introduce an auditory-content-based perceived rendering quality analysis to quantify
the impact of visual perception under different auditory conditions in foveated rendering. Based on the analysis results, we propose
an audio-visual aware foveated rendering method (AvFR). AvFR first constructs an audio-visual feature-driven perception model that
predicts the eccentricity-based visual perception in real time by combining the scene’s audio-visual content, and then proposes a
foveated rendering cost optimization algorithm to adaptively control the shading rate of different regions with the guidance of the
perception model. In complex scenes with visual and auditory content containing over 1.17M triangles, AvFR renders high-quality
binocular foveated images at an average frame rate of 116 f ps. The results of the main user study and performance evaluation validate
that AvFR achieves significant performance improvement (up to 1.4× speedup) without lowering the perceived visual quality compared
with the state-of-the-art VR-HMD foveated rendering method.

Index Terms—Virtual Reality, Foveated Rendering, Perception-driven Rendering

1 INTRODUCTION

Foveated rendering, a rendering acceleration technique, takes advan-
tage of the capabilities and limitations of the human visual system
(HVS) to improve rendering performance in a way that is unnoticeable
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to users. As the geometric structures, lighting, and animation effects
in virtual reality (VR) scenes become increasingly complex, current
foveated rendering can hardly meet users’ demands for rendering high-
quality binocular images at high frame rates in head-mounted displays
(HMDs). In VR, current foveated rendering methods often rely on
visual-perception models. These methods are based on the understand-
ing that the HVS has a limited capacity to perceive visual content, but
they have not yet taken into account how auditory factors can affect the
HVS’s perception.

Research shows that audio exerts effects on the HVS’s visual percep-
tion. From the physiological perspective, the human auditory system
(HAS) and the HVS are among the main sensory systems involved in
postural control and balance [7]. When vestibular function is compro-
mised, it weakens HVS’s perception through visual-vestibular integra-
tion [1, 39]. When the perceived loudness of audio reaches a certain
threshold, rod cells in the retina exhibit reduced sensitivity to brightness
discrimination [14]. The HAS is also sensitive to audio frequencies,
and even if the actual sound pressure level remains constant, the per-
ceived loudness of audio in the HAS varies with frequency [29, 43].
Moreover, the semantic coherence between auditory and visual stimuli
affects HVS’s perception [21]. Thus, in VR scenes containing auditory
content, the HVS’s visual perception shifts under varying auditory con-
ditions. Furthermore, when HVS’s visual perception ability degrades



under specific auditory conditions, more aggressive foveated rendering
can be implemented without sacrificing perceived fidelity.

Existing foveated rendering techniques model the HVS’s
eccentricity-dependent perceptual capability based on the visual con-
tent of VR scenes, disregarding the effects of auditory content on visual
perception. To optimize foveated rendering by considering both audi-
tory and visual content, two main challenges must be addressed. First,
to quantify the eccentricity-dependent visual perceptual ability of the
HVS, a perception model must be developed to account for heteroge-
neous features from auditory and visual content in VR scenes. Second,
guided by the perception model, the foveated rendering cost needs to
be optimized to achieve significant performance improvement without
sacrificing visual fidelity.

In this paper, we first introduce an auditory-content-based perceived
rendering quality analysis to provide theoretical foundation and ex-
perimental validation for audio-visual aware foveated rendering. To
address the above two challenges, we propose the Audio-Visual aware
Foveated Rendering method (AvFR). For the first challenge, we present
an audio-visual feature-driven perception model to predict the HVS’s
visual perceptual capability in foveated rendering under varying audio-
visual conditions. For the second challenge, we propose a foveated
rendering cost optimization algorithm that achieves significant shading
rate optimization guided by the predicted eccentricity-dependent visual
perceptual ability, without sacrificing perceived visual quality.

Fig. 1 gives the illustration of AvFR in VR scene library. AvFR
first extracts auditory and visual features (Fig. 1(a) left) to construct
the audio-visual feature-driven perception model. Using the cost op-
timization algorithm, AvFR generates optimized foveated rendering
results (Fig. 1(a) middle). Compared with the state-of-the-art VR-HMD
foveated rendering method (FR) [26] (Fig. 1(a) right), AvFR achieves
comparable perceived visual quality. Fig. 1(b) compares rendering
performance: AvFR (bottom) achieves an average 83 f ps in library
(8.85M triangles) – 1.3× speedup over FR (up).

In summary, the contributions of this paper are as follows:
• An auditory-content-based perceived rendering quality analysis

to measure the eccentricity-dependent perceived visual quality
under varying auditory conditions;

• An audio-visual feature-driven perception model to quantify the
eccentricity-dependent visual perceptual ability based on the au-
ditory and visual content of VR scenes;

• A foveated rendering cost optimization algorithm to achieve
significant foveated rendering cost savings compared with the
state-of-the-art VR-HMD foveated method according to the
eccentricity-dependent visual perceptual ability.

Source code can be found on the web page 1.

2 RELATED WORK

In this section, we review the recent advances of foveated rendering
and perception-driven rendering in VR that are related to our work.

2.1 Foveated Rendering in VR

Foveated rendering technology takes advantage of the non-uniform
feature of the HVS sensitivity of the retina by dynamically adjusting
the image quality in different regions of the visual field. This technology
enhances rendering performance without losing visual fidelity [11, 49].
The recent research of foveated rendering in VR that is related to our
work focuses on leveraging perception models to accelerate rendering
in the graphics pipeline.

Patney et al. [26] first design a VR foveated rasterization system
based on the visual acuity fall-off model. It proposes a novel foveated
anti-aliasing algorithm that is implemented in the coarse pixel shading
technique (CPS), aiming to recover peripheral details that are resolv-
able by the HVS but with lower rendering quality, thus achieving
a significant reduction in the number of shading operations in VR

1https://drive.google.com/drive/folders/
1rkVElG156xzAwDWLOAOOEhEgXp0hR5cH

HMDs. To further improve foveated rasterization performance in VR,
Meng et al. [24] introduce a kernel-mapping-based foveated rendering
framework (KMF), which uses a kernel transformation function to map
foveated rendering computations into a low-resolution and non-uniform
shading space, thereby achieving variable-resolution rendering effect
within a single shading process. Additionally, Ye et al. [52] propose
a rectangular mapping function to preserve peripheral sharp details in
the KMF. Later, Fan et al. [9] further improve the rendering quality in
the KMF by employing a novel convolutional kernel mapping function
to increase the shading density in peripheral salient regions. Zhang
et al. [53] reduce unnecessary rendering costs in the upper and lower
visual fields for foveated rendering based on the horizontal-vertical and
vertical-meridian asymmetries of the HVS.

Besides the decline in visual acuity characteristics of the HVS, prop-
erties such as ocular dominance, contrast sensitivity, and attention
mechanisms further enhance the quality and performance of foveated
rendering in VR. Meng et al. [23] utilize the ocular dominance charac-
teristics of the HVS to reduce the rendering quality of the non-dominant
eye in VR HMD rendering, thereby further improving rendering per-
formance without sacrificing perceived visual quality. Shi et al. [32]
leverage changes in HVS visual acuity under different motion condi-
tions to parametrically adjust the shading of peripheral regions based on
various motion patterns, further accelerating foveated rendering. Based
on the spatiotemporal contrast sensitivity function (CSF), Stengel et
al. [38] propose a foveated sampling method to optimize performance
without affecting perceived visual quality by shading only regions with
important image features and interpolating the remaining areas. Some
studies further refine foveated rendering by using luminance CSFs,
which improve computational efficiency by reducing the number of
sample rays in regions with low luminance contrast sensitivity [31, 46].
Krajancich et al. [18] introduce an attention-aware contrast sensitivity
model into the foveated rendering framework to dynamically adjust
rendering quality based on user attention.

Although existing methods utilize various physiological character-
istics of the HVS to optimize foveated rendering, they overlook the
impact of auditory content on visual perception in VR. To further en-
hance performance without compromising perceived visual quality,
we specifically optimize the cost of foveated rendering based on both
auditory and visual content in VR scenes.

2.2 Perception-driven Rendering in VR

Another related research field is perception-driven rendering in VR,
which focuses on optimizing user experience by leveraging cross-modal
perception to guide rendering in VR.

Many researchers leverage the spatiotemporal features of visual
cues to optimize VR rendering. Jindal et al. [16] dynamically con-
trol local shading and refresh rates based on motion perception to
optimize the trade-off between rendering quality and performance. Kra-
jancich et al. [17] introduce a new model to jointly measure eccentricity-
dependent critical flicker fusion thresholds for both space and time to
guide perception-driven rendering. Additionally, Tursun et al. [45]
measure the temporal aspect of visual perception in the periphery,
demonstrating how foveated rendering methods can be evaluated and
optimized to limit the visibility of temporal aliasing based on the pro-
posed model.

In addition to visual cues, the impact of sound on visual perception
is studied in VR. To improve the sound fidelity of virtual environments,
Tang et al. [44] learn the acoustic characteristics of different environ-
ments, ensuring that the sounds emitted by virtual objects match the
current environmental semantics. Malpica et al. [19] first demonstrate
that sound effects influence the perception of material rendering in VR
through a series of user experiments. They validate that sound effects
have a more significant impact on low-quality rendering than on high-
quality ones during material perception. Subsequently, they explore the
effect of auditory stimuli on visual performance in VR and conclude
that the detrimental effect of auditory stimuli on visual performance is
significant regardless of cognitive load levels [20]. Jimenez et al. [15]
further study the audiovisual suppression effect (ASE) and demonstrate
that the ASE is influenced by sound volume, frequency, and cogni-

https://drive.google.com/drive/folders/1rkVElG156xzAwDWLOAOOEhEgXp0hR5cH
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tive load, suggesting that these effects can be applied in practical VR
applications such as redirected walking.

Existing research shows that visual perception is significantly af-
fected by audio effects. However, no studies have established a per-
ception model yet to evaluate and quantify the impact of audio-visual
content in VR scenes on eccentricity-dependent visual perception. To
fill this gap, based on the auditory and visual content of VR scenes, we
propose an audio-visual feature-driven perception model to quantify the
perceptual capabilities of the HVS and provide guidance for optimizing
the foveated rendering cost.

3 AUDITORY-CONTENT-BASED PERCEIVED RENDERING QUAL-
ITY ANALYSIS

In this section, we first discuss the impact of audio on the HVS and
how this effect benefits foveated rendering in Section 3.1. Based on the
theoretical basis, we construct the supplemental pilot user studies to
quantify the differences in the perceived visual quality and the visual-
perception attention between auditory and non-auditory conditions.
The supplemental pilot user study 1 evaluates the effect of auditory
content on visual perception in VR. The experimental results show
that viewing scenes with visual-semantic-consistent auditory content
enhances perceived visual quality compared to silent scenes in VR (see
more details in Supplement Section 1.1). Subsequently, the supplemen-
tal pilot user study 2 explores the factors contributing to the perceived
visual quality gap between auditory and non-auditory conditions in VR
(see more details in Supplement Section 1.2). Based on the theoretical
basis and supplementary pilot user studies, in Section 3.2, we conduct
the pilot user study to further quantify the impact of audio with different
auditory factors on the eccentricity-dependent perceived visual quality.

3.1 Theoretical Basis
In this section, we discuss the impact of audio on the HVS and how
this effect benefits foveated rendering. Related researches show that
audio affects the visual perception [4, 14, 50]. From an anatomical
perspective, the vestibular organs in the HAS regulate position and
balance. Audio can affect these vestibular functions, subsequently
affecting the visual perception through visual-vestibular integration [1].
From the perspective of scene semantics, the semantic consistency
between auditory and visual cues also impacts the HVS’s perception
[21].

In VR, audio spectra are diverse and often lack distinct primary fre-
quencies and waveform characteristics. It is difficult to directly extract
auditory perception features from the audio spectrum to quantify its
impact on visual perception. Audio loudness and frequency, as the most
direct auditory attributes affecting human perception, are important for
understanding how audio affects visual perception [25], which makes
them ideal for studying the impact of audio on visual perception in
VR. Therefore, to investigate the relationship between audio and visual
perception, this paper primarily extracts perceptual features from two
fundamental audio properties: loudness and frequency.

3.1.1 The Effect of Audio Loudness on Visual Perception
Audio loudness refers to the subjective perception of audio intensity
by the HAS [42], and it can be quantified and standardized through
objective measurement methods [30, 54]. Audio loudness can be mea-
sured by sound pressure, which represents the changes in volumetric
pressure caused by sound disturbances. Direct use of sound pressure
results in a wide range of values, which may not accurately reflect the
HAS’s perception of sound. Current acoustic and medical research of-
ten uses the sound pressure level (SPL) to indicate changes in loudness,
although it does not perfectly correspond to the loudness perceived by
the HAS. SPL is calculated by taking the logarithm of the ratio between
the actual and reference sound pressure, typically expressed in decibels
(dB). Loudness Units relative to Full Scale (lu f s) [40] is a unit for
measuring audio loudness that better aligns with human perception of
loudness compared with dB, which provides improved consistency and
standardization.

The loudness of the audio affects the visual perception capability
of the HVS. Audio at higher loudness levels can shift visual attention,

reducing the HVS’s perception of certain regions within the current
visual field [34]. The loudness level of audio affects the integration of
visual and auditory information, where high-decibel audio can enhance
the coherence and consistency of perception, improving the overall per-
ception experience [36]. Further, Ayres and colleagues [1] validate that
the sensitivity of retinal rod cells to brightness discrimination decreases
at noise levels of 90dB, leading to prolonged response times to dim
light stimuli; at 95dB, the pupils dilate; at 115dB, the eyes’ adaptability
to brightness changes decreases by 20%. Additionally, the sudden onset
of audio can affect vestibular function [13], thereby impacting visual
sensitivity. Therefore, in foveated rendering, dynamically adjusting the
shading rate of the peripheral region based on the loudness level of the
audio can achieve higher rendering performance without reducing the
perceived visual quality.

3.1.2 The Effect of Audio Frequency on Visual Perception
Audio frequency refers to the number of vibrations per second of a
sound wave at a given point, typically measured in Hertz (Hz) [2].
Audio frequency is the primary physical attribute determining the per-
ceived pitch in the HAS; higher frequencies generally correspond to
higher perceived pitches, while lower frequencies correspond to lower
ones [22]. Existing methods typically employ Fast Fourier Transform
(FFT) to measure audio frequencies [28,51], which involves converting
the audio signal from the time domain to the frequency domain. This
process generates a spectrum that displays the intensity or amplitude of
various frequency components, identifying the peak amplitude as the
fundamental frequency of the audio.

Audio frequency affects the visual perception. Van der Burg et
al. [47] demonstrate that audio frequency has a cross-modal effect on
the visual modality, where audio frequency changes can modulate vi-
sual attention distribution, with high frequencies enhancing focus on
visual stimuli. Experiments by Hagtvedt et al. [12] indicate a cross-
modal link between sound frequency and visual color brightness, where
high-frequency sounds shift visual attention to lighter colors, while
low-frequency sounds have the opposite effect, thereby affecting visual
attention. Furthermore, Fletcher et al. [10] demonstrate that the HAS’s
sensitivity to different frequencies is uneven; even at the same sound
pressure level, the perceived loudness varies across frequencies. The
equal-loudness contours quantify that the HAS is more sensitive to
mid to high-frequency sounds, particularly between 2 to 5kHz. Thus,
leveraging high-frequency audio to enhance attention concentration
and reduce the foveal region in foveated rendering, and adjusting the
shading rate of the peripheral region based on frequency-induced loud-
ness perception, merits further investigation for more efficient foveated
rendering.

3.2 Pilot User Study: Quantifying Audio Effects on
Foveated Rendering

The results of supplemental pilot user studies demonstrate that incorpo-
rating semantically relevant auditory content in VR scenes enhances
the perceived visual quality of rendering results (Supplement Sections
1.1 and 1.2). In this section, based on the theoretical basis in Section
3.1 and the results of supplemental pilot user studies, we conduct the
pilot user study to further quantify the impact of auditory content on
foveated rendering in VR. We formulate the hypothesis for the pilot
user study:
H1 Viewing scenes with visual-semantic-consistent auditory content
within a specific range of loudness and frequency significantly enhances
perceived visual quality through foveated rendering in VR.

3.2.1 User Study Design
Setup We use a PICO 4 Pro HMD powered by a workstation with a
3.9Hz Intel® Core™ i9-12900K CPU, 32GB RAM, and an NVIDIA
GeForce GTX 3080 Ti graphic card. The resolution of the HMD is
2160×2160 pixels for each eye, and the field-of-view is 105◦. The pro-
gram is developed with C# and is run in Unity 2021.3.13f1. We imple-
ment the variable-rate shading pipeline (VRS) [5] in Unity. All scenes
are presented to the participants through VRS to achieve foveated
rendering effects in HMDs [26].
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Fig. 2: Aaverage values and standard deviations of µ under different foveated rendering conditions as a function of audio loudness and frequency in
the pilot user study.

Dataset The supplementary pilot user study 1 constructs a 360◦
panoramic video dataset D with auditory content (see more details
in Supplement Section 1.1.1). To facilitate the comparison of visual
perception under different auditory conditions, we expand D to obtain
the expanded dataset D′ with different frequencies and loudness, which
is detailed in Supplement Section 1.3.
Participants We recruit 20 participants, the same as the supplementary
pilot user study 1. Participants include 10 males and 10 females, aged
18 to 50, with an average age of 35. All participants have normal
hearing and vision or have corrected vision through glasses. Ten of
them have experience using HMD VR applications before the study.
Condition We divide the view of foveated rendering into the foveal,
transitional, and peripheral regions, which is the same as [11]. The
foveal layer uses the highest shading rate in VRS, the peripheral layer
uses the lowest, and the transitional layer uses a linearly declining
shading rate from the foveal to the peripheral region. We define the
foveated rendering coefficients in the graphics pipeline as FR(E f , Et ),
where E f is the eccentricity angle at the edge of the foveal region,
and Et is the eccentricity angle at the edge of the transitional region.
In the pilot user study, we divide the foveated rendering into three
levels FRL1, FRL2, and FRL3, each containing three conditions C1,
C2, and C3. E f is constant within the same level but decreases as
the level increases. Within the same level, Et decreases as the condi-
tion sequence progresses. Specifically, for FRL1−C1, FRL1−C2, and
FRL1−C3, (E f , Et ) are set to (14.34◦, 27.08◦), (14.34◦, 23.49◦), and

(14.34◦, 18.39◦); for FRL2−C1, FRL2−C2, and FRL2−C3, (E f , Et ) are
set to (12.26◦, 27.08◦), (12.26◦, 23.49◦), and (12.26◦, 18.39◦); for
FRL3−C1, FRL3−C2, and FRL3−C3, (E f , Et ) are set to (9.44◦, 27.08◦),
(9.44◦, 23.49◦), and (9.44◦, 18.39◦). (E f , Et ) of FRL1−C1 are set the
same as the state-of-the-art VR-HMD foveated rendering method [26].

Procedure Participants are instructed to view one randomly selected
scene for each scene type in dataset D′. First, they view the selected
scenes using the full-resolution rendering method without auditory
content and are informed that these are high-quality rendering ver-
sions. Each scene contains auditory content with low, mid, and high
frequencies, presented with varying levels of loudness and frequency.
The scenes are rendered using foveated rendering coefficients ranging
from FRL1−C1 to FRL3−C3 in random order, generating 81 rendering
sequences for each scene. Before viewing the scenes, we visualize the
artifacts generated by the 360◦ panoramic video stitching and instruct
participants to ignore any artifacts resulting from the stitching process
in the 360◦ panoramic videos. For each rendering sequence, partici-
pants are instructed to view it for 20s, and then provide a corresponding
visual perceptual quality score, µ . After completing one sequence, the
next one follows. Each participant completes the entire task in two
sessions, averaging 30min each, for a total of 60min. A total of 20 (par-
ticipants) × 2 (scenes) × 9 (different audio loudness and frequencies
for each scene) × 9 (foveated rendering conditions) = 3240 trials are
collected.



Table 1: Compared with FRL1−C1, the items of (audio loudness, audio fre-
quency, µ̄) under other foveated rendering conditions with no significant
differences evaluated in p-value.

Condition Auditory Factor with no Significant Difference

FRL1−C2

vs.
FRL1−C1

(-18.54lu f s, 5.42kHz, 4.65), (-18.32lu f s, 5.32kHz, 4.63),
(-15.20lu f s, 2.62kHz, 4.58), (-12.56lu f s, 1.76kHz, 4.52),
(-19.46lu f s, 3.45kHz, 4.55), (-11.63lu f s, 1.54kHz, 4.55),
(-19.98lu f s, 4.07kHz, 4.45), (-19.35lu f s, 1.80kHz, 4.48),
(-21.14lu f s, 1.84kHz, 4.45), (-13.56lu f s, 5.05kHz, 4.25)
(-31.46lu f s, 5.05kHz, 3.98), (-28.28lu f s, 5.05kHz, 3.95),
(-12.13lu f s, 5.05kHz, 3.89), (-12.98lu f s, 2.13kHz, 3.30),
(-31.55lu f s, 2.01kHz, 3.29), (-11.07lu f s, 3.21kHz, 3.20)

FRL1−C3

vs.
FRL1−C1

(-13.56lu f s, 5.05kHz, 4.14), (-14.28lu f s, 5.05kHz, 3.93),
(-12.13lu f s, 5.05kHz, 3.84), (-12.89lu f s, 2.13kHz, 3.35),
(-11.07lu f s, 3.21kHz, 3.18), (-11.94lu f s, 4.09kHz, 3.02),
(-12.99lu f s, 3.73kHz, 2.98), (-11.84lu f s, 4.01kHz, 2.96)

FRL2−C1

vs.
FRL1−C1

(-19.13lu f s, 4.76kHz, 4.52), (-18.32lu f s, 5.32kHz, 4.52),
(-19.46lu f s, 3.45kHz, 4.51), (-15.20lu f s, 2.62kHz, 4.50),
(-19.35lu f s, 1.80kHz, 4.46), (-21.42lu f s, 5.21kHz, 4.42),
(-28.28lu f s, 5.05kHz, 4.04), (-31.46lu f s, 5.05kHz, 3.95),
(-12.13lu f s, 5.05kHz, 3.88), (-22.44lu f s, 5.80kHz, 3.35),

(-29.56lu f s, 3.51kHz, 3.29)
FRL2−C2

vs.
FRL1−C1

(-12.56lu f s, 3.45kHz, 3.24) (-13.86lu f s, 3.21kHz, 3.16)
(-13.31lu f s, 3.67kHz, 2.90) (-12.89lu f s, 3.21kHz, 2.88)
(-11.84lu f s, 4.01kHz, 2.85) (-11.94lu f s, 1.98kHz, 2.83)

FRL3−C1

vs.
FRL1−C1

(-12.56lu f s, 3.45kHz, 3.20) (-13.86lu f s, 3.21kHz, 3.18)
(-15.20lu f s, 2.62kHz, 3.14) (-12.89lu f s, 3.21kHz, 2.94)

(-11.94lu f s, 1.98kHz, 2.88)

3.2.2 Results and Discussion

Fig. 2 visualizes the average values and standard deviations of the
visual perceptual quality score µ across different foveated rendering
conditions based on audio loudness and frequency, where (a)-(c) repre-
sent FRL1−C1 to FRL1−C3, (d)-(f) represent FRL2−C1 to FRL2−C3, and
(g)-(i) represent FRL3−C1 to FRL3−C3, respectively. To ensure the con-
sistency of visual content across different audio loudness and frequency
levels, in Fig. 2, we categorize the loudness and frequency into low,
medium, and high levels for each foveated rendering condition. We
then merge the data of µ based on the factor levels to create nine points
for visual perception trend fitting. Since each scene in D′ contains
low, mid, and high loudness and frequency, this ensures that the visual
content for each point in Fig. 2 under each foveated rendering condition
is consistent.

Fig. 2 shows that under the same audio loudness and frequency
levels, as the eccentricity angle of the foveal region decreases, µ shows
a downward trend. Similarly, µ shows a downward trend as the eccen-
tricity angle of the transitional region decreases. Higher audio loudness
positively affects µ . In all foveated rendering conditions, as loudness
increases from -30lu f s to 0lu f s, µ shows an upward trend. Regarding
audio frequency, under more aggressive foveated rendering conditions
(e to i), increasing the frequency to higher ranges improves µ when the
loudness is low (≤-25lu f s). Thus, we conclude that audio loudness
and frequency within specific ranges enhance perceived visual quality.

We use the ANOVA method to evaluate the impacts of audio loud-
ness and frequency on µ . Significant effects on µ are found for audio
loudness (F59,23207 = 38.35, p = 1.03× 10−296, η2

p = 0.39) and fre-
quency (F59,23207 = 64.58, p = 1.61× 10−98, η2

p = 0.14), with both
effect sizes classified as large. The ANOVA results indicate that audio
loudness and frequency significantly influence perceived visual quality.
In conjunction with the conclusions of Fig. 2, H1 is proven to be valid.

Table 1 shows the items (audio loudness, audio frequency, and
average visual perceptual quality score µ) under different foveated ren-
dering conditions where no significant differences in perceived visual
quality were found compared to the state-of-the-art foveated rendering
method (i.e., FRL1−C1) based on p-values. Results indicate that within
specific loudness and frequency ranges, reducing the eccentricity angle
of the foveal region from L1 to L2, or reducing the eccentricity angle of
the transitional region from C1 to C2, yields no significant difference
in µ . Further decreasing the eccentricity angles in either the foveal
or transitional region still yields no significant difference in p-values.
Therefore, in foveated rendering, under specific auditory factors, reduc-

ing shading in the foveal or transitional region does not significantly
affect perceived visual quality. We believe that by further combining
foveated sampling based on visual content, more aggressive foveated
rendering optimization can be achieved.

4 AUDIO-VISUAL AWARE FOVEATED RENDERING

In this section, we propose the audio-visual aware foveated rendering
method (AvFR) to afford foveated rendering cost savings without sac-
rificing the perceived visual quality in VR scenes containing auditory
content. We first introduce the audio-visual feature-driven perception
model (AvPM) in AvFR, which predicts the HVS’s visual perceptual
ability under varying auditory and visual content in real time to guide
the foveated rendering cost optimization. Then, we present the foveated
rendering cost optimization, which imperceptibly optimizes the shading
rate in foveated rendering with the guidance of the AvPM.

Fig. 3 visualizes the pipeline of AvFR. There are three steps in AvFR.
Step 1 is the audio-visual feature-driven perception model construction,
which constructs a perception model based on the audio-visual content
to guide the foveated rendering cost optimization. Step 2 is the foveated
rendering cost optimization, which generates a required shading rate
map to control the shading rate in the output framebuffer based on the
guidance of the audio-visual feature-driven perception model. Step
3 is the VRS-based foveated rendering, which renders the foveated
framebuffer in the VRS pipeline with the shading rate defined by the
required shading rate map. To demonstrate the details of the steps, we
give Algorithm 1.

Given the inputs experimental results data in the pilot user study,
3D content S, VR scene auditory content aud, current viewpoint V ,
gaze position gaze, length of time for clamping the audio Ta, sampling
interval of audio features Ts, full resolution of the output framebuffer
(w,h), the fixed size of pixel block (wb,hb), and the predefined shading
rate array SR, Algorithm 1 outputs the foveated rendering framebuffer
f b. AvFR is implemented on VRS [5] due to the excellent compatibility
and performance of VRS in the universal rendering pipeline. VRS
divides pixels in the output framebuffer into fixed-size pixel blocks,
(wb,hb) defines the size of each pixel block, and SR is the shading rate
array that contains multiple shading rate options for rendering each
pixel block in VRS.

In Algorithm 1, we first build the training data set D based on data
for the construction of AvPM (lines 1-8). In line 1, we initialize D as an
empty set. Each item in data includes the scene audio clip item.audio,
the scene video clip item.video and the visual perceptual quality score
item.µ [32] when the participants view the scene. For each item in data,
we calculate the average auditory perception-loudness feature value γld
(line 3) and the average auditory perception-frequency feature value
γ f q (line 4) based on the audio clip in item. The calculation details
of audLoudFeature and audFreqFeature are described in Sections
4.1.1.1 and 4.1.1.2. We calculate the average CSF-based visual loss
feature γvis based on the video clip in item in line 5. The details of
cs f LossFeature are described in Section 4.1.1.3. Then we merge {[γld ,
γ f q, γvis], item.µ} as an entry and add it into D (line 6). After iterating
through all items in data (line 7), we merge the entries in D with
identical auditory and visual features, with this entry’s µ in D being the
average µ of these entries with identical auditory and visual features
(line 8). Then, we construct AvPM to fit µ with [γld , γ f q, γvis] in D
(line 9), the details are demonstrated in Section 4.1.2.

We perform foveated rendering with the guidance of AvPM. We
initialize the auditory perception-loudness feature value γld , the audi-
tory perception-frequency feature value γ f q, and the CSF-based visual
loss feature γvis as 0 (line 10). Then, we perform the rendering loop
(lines 11-19). In the rendering loop, we first capture the audio clip
audt

t−Ta
within the scene auditory content aud at the time period Ta

(line 12). Due to the temporal continuity of audt
t−Ta

, we update audio
perceptual features γld and γ f q with a period of Ts (lines 13-15), which
can enhance algorithm performance while maintaining the accuracy
of audio perceptual features. Then, we calculate the CSF-based visual
loss feature γvis based on the 3D content S, current viewpoint V , and
gaze position gaze (line 16). We perform the foveated rendering cost
optimization algorithm FRCO to generate the required shading rate
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Fig. 3: Pipeline of the Audio-visual aware Foveated Rendering Method

map mapsr with the guidance of AvPM (line 17). The details of FRCO
are described in Section 4.2. Finally, the output foveated rendering
framebuffer f b for the current viewpoint V is rendered by VRS, and
shading rates of all pixel blocks in f b are determined by SR (line 18).

4.1 Audio-visual Feature-driven Perception Model
The theoretical basis in Section 3 and pilot user studies validate that the
loudness and frequency of auditory content have effects on the HVS’s
perception in VR. Many studies show that the contrast is the main
factor that significantly affects the perceptual ability of the HVS due to
the photosensitivity of ganglion cells [18, 46, 48]. Therefore, foveated
rendering can be further optimized based on the above characteristics of
the HVS according to the audio-visual content in VR. However, existing
methods cannot leverage the characteristics of the HVS in VR scenes
containing auditory content, leading to limited improvement in foveated
rendering performance. The proposed AvPM provides guidance for
minimizing foveated rendering cost by modeling the HVS’s visual
perceptual ability based on the audio-visual content. AvPM has two
steps: the first step is the auditory and visual features extraction, which
are related to the HVS’s visual perceptual ability; the second step is the
audio-visual feature-based perceptual quality modeling, which predicts
the HVS’s visual perceptual ability based on the extracted auditory and
visual features.

4.1.1 Auditory and Visual Features Extraction

Section 3.1 demonstrates that the loudness and frequency of auditory
content affect the HVS’s perception. Many foveated rendering studies
show that the effect of visual content on the HVS’s perception mainly
depends on contrast sensitivity [18, 31]. Therefore, in the auditory fea-
ture extraction, we extract the auditory perception-loudness feature
and the auditory perception-frequency feature based on the auditory
content. In visual feature extraction, we extract the CSF-based visual
loss feature in foveated rendering. The auditory perception-loudness
feature measures the users’ perceptual ability to the audio loudness in
the current VR scene, where a higher feature value indicates a stronger
perception of the audio loudness by the HAS. The auditory perception-
frequency feature measures the users’ perceptual ability to the audio
frequency in the current VR scene, where a higher feature value in-
dicates a stronger perception of the audio frequency. The CSF-based
visual loss feature measures the contrast loss perceivable by the HVS
in foveated rendering compared with the full-resolution rendering in

the current VR scene, where a higher feature value indicates a stronger
visual loss perceivable by the HVS.

4.1.1.1 Auditory Perception-loudness Feature Extraction

In the auditory perception-loudness feature extraction, since the HAS’s
perception of audio loudness is not linear, the common sound pressure
level units (dB) cannot accurately model the human perception of audio
loudness well [40]. The ITU-R BS.1770-4 recommendation [37] has
been shown to correlate well with the perceived loudness of the HAS,
which is an efficient algorithm consisting of frequency weighting filters
and gated energy measurements. Due to the effectiveness of the ITU-R
BS.1770-4 recommendation in modeling the perceived loudness of the
HAS and its high computational efficiency, we use it to extract the
auditory perception-loudness feature γld . Given the auditory content
audt

t−Ta
at the current time t from the past period Ta, the calculation of

γld is shown in Equation 1.

γld = clamp(itu(audt
t−Ta

), ITUmin, ITUmax)− ITUmin (1)

where clamp(x,valmin,valmax) clamps x within a range of values be-
tween valmin and valmax; itu(aud) calculates the loudness units rela-
tive to full scale (lu f s) [33] with the given audio aud by the ITU-R
BS.1770-4 recommendation; ITUmin and ITUmax are the minimum
and maximum thresholds in the ITU-R BS.1770-4 recommendation.
Equation 1 avoids the negative infinite result when the sound pressure
level of audt

t−Ta
is 0dB, and converts the perception-loudness features

in the range of [0, ITUmax-ITUmin].

4.1.1.2 Auditory Perception-frequency Feature Extraction

In the auditory perception-frequency feature extraction, since the spec-
trum of auditory content in VR at any moment contains numerous
frequencies with various intensities, and the relationship between the
HAS’s perception and the audio frequency is non-linear, it is difficult
to effectively express the changes in the HVS’s perception at differ-
ent frequencies by directly representing frequency in Hertz (Hz) [54].
Moreover, the HAS’s perception of frequencies varies across different
frequency bands [54], making it challenging to effectively represent
the perceived frequency by simply summing all frequencies within the
spectrum based on intensity weighting. Thus, to effectively extract the
auditory perception-frequency feature, two issues need to be solved:



Algorithm 1: Audio-visual aware Foveated Rendering
input :audio-aware experimental results data, 3D content S,

auditory content aud, current viewpoint V , gaze
position gaze, audio clamp interval Ta, sampling
interval Ts, full resolution of the output framebuffer
(w,h), fixed size of pixel block (wb,hb), predefined
shading rate array SR

output :output framebuffer f b

1 D ← /0
2 for item ∈ data do
3 γld ← audLoudFeature(item.audio)
4 γ f q ← audFreqFeature(item.audio)
5 γvis ← csfLossFeature(item.video)
6 D ← D ∪ ({[γld ,γ f q,γvis],item.µ})
7 end
8 D ← avgScore(D)
9 AvPM← constructModel(D)

10 γld , γ f q, γvis ← 0,0,0
11 for time t in rendering loop do
12 audt

t−Ta
← capAudio(aud)

13 if t%Ts is 0 then
14 γld ← audLoudFeature(audt

t−Ta
)

15 γ f q ← audFreqFeature(audt
t−Ta

)
16 end
17 γvis ← csfLossFeature(S, V , gaze)
18 mapsr ← FRCO(w, h, wb, hb, SR, γld ,γ f q,γvis, AvPM)
19 f b← VRS(S, V , mapsr)
20 end

Issue 1: What scale unit is used to express the audio frequency?

Issue 2: How to integrate the frequency components in various fre-
quency bands to effectively extract the auditory perception-
frequency feature?

For Issue 1, we use the Mel scale to express the perceptual audio
frequency, which has shown excellent ability in modeling frequency
perception [41]. Given the current frequency f q in Hz of the auditory
content, the Mel scale mel is calculated by Equation 2:

mel = 2595lg(1+
f q

700
) (2)

Due to the fact that the basilar membrane of the cochlea has 24
points where the maximum resonance occurs at 24 different frequencies,
the audible frequency range for the HAS is divided into 24 critical
bands [55]. Audios that arrive at the same critical band of the cochlea
within a short period of time are difficult to distinguish due to auditory
masking. This results in the perception of frequency by the HAS having
the characteristic of frequency band division. We divide the Mel scale
into multiple overlapping frequency bands, and use the granularity of
bands to filter and synthesize the intensity of various frequencies of
audio, which is more in line with the auditory characteristics of the HAS.
Therefore, for Issue 2, we extract the auditory perception-frequency
feature by performing a weighted sum based on frequency intensity
on the frequencies within 24 specific critical bands. Specifically, we
utilize a filter set FB to compute the audio’s Filter Banks (FBanks)
perceived by the HAS. FBanks represents the intensity level of the
audio in various frequency critical bands. Then, we perform a weighted
sum of the center frequencies in critical bands using the computed
FBanks as weights to obtain the auditory perception-frequency feature
γ f q, as shown in Equation 3:

γ f q =
24

∑
i=1

FB[i]

∑
24
m=1 FB[m]

·meli (3)

where meli is the center frequency in the i-th critical frequency band,

as shown in Equation 4:

meli =


minMel i = 1
i−1
24

(maxMel−minMel)+minMel 1 < i < 24

maxMel i = 24

(4)

where minMel, maxMel are the minimum and maximum frequencies
of the audio. FB[i] is the calculated FBanks of FB for the i-th critical
frequency band, the calculation is shown in Equation 5:

FB[i] = ∑
mel∈[minMel,maxMel]

P(mel) ·Hi(mel) (5)

where P(mel) is the intensity spectrum calculation based on Hamming
window and Fourier transformer, similar to Mel Cepstral Coefficients
(MFCC) [6]; Hi(mel) is the triangular filtering function for the i-th
filter in FB, as shown in Equation 6:

Hi(mel) =



0 mel < meli−1

mel−mel(i−1)
mel(i)−mel(i−1)

meli−1 ≤ mel < meli

1 mel = meli
mel(i+1)−mel

mel(i+1)−mel(i)
meli < mel ≤ meli+1

0 mel > meli+1

(6)

4.1.1.3 CSF-based Visual Loss Feature Extraction

In the CSF-based visual loss feature extraction, since luminance con-
trast sensitivity can efficiently model the visual perceptual capability
of the HVS [8, 49], we use the luminance contrast sensitivity function
to quantify the visual perceptual loss of the foveated rendering. The
CSF-based visual loss feature extraction includes three processes. In
process 1, we calculate the eccentricity-based luminance contrast sen-
sitivity of each pixel. In process 2, we quantify the overall perceived
visual quality of the current rendering result by a weighted sum of the
contrast sensitivity values of all pixels. In process 3, we calculate the
difference in overall contrast sensitivity between the full resolution and
foveated rendering results to obtain the CSF-based visual loss feature.

In process 1, for each pixel p, the frequency-based luminance con-
trast sensitivity is calculated by Equation 7 [46]:

Cn( f , p) =C( f , p)Scs f ( f ,θ(p),La( f , p)) (7)

where f is the spatial frequency in cpd units (cycles-per-visual-degree);
C( f , p) is the luminance contrast pyramid decomposition result of the
given frequency f at p; θ(p) is the retinal eccentricity of p; La( f , p)
models the adaptation luminance based on the Laplacian pyramid de-
composition [3]; Scs f is the contrast sensitivity function proposed
in [27]. Then, the eccentricity-based luminance contrast sensitivity
Cn(p) of p is obtained by accumulating the frequency-based luminance
contrast sensitivity of all peak frequencies in the frequency band set B
proposed in [46], as shown in Equation 8:

Cn(p) = ∑
f∈B

Cn( f , p) (8)

According to [46], for a pixel p with a shading rate of sr, its peak
frequency f will decrease to

√
sr · f in frequency bands contained in B.

Thus, the eccentricity-based luminance contrast sensitivity Cn(p,sr) of
p with the shading rate p.sr is calculated by Equation 9:

Cn(p,sr) = ∑
f∈B

Cn(
√

p.sr · f , p) (9)

In process 2, the perceived visual quality Cv( f b) of the foveated
rendering result f b is qualified by performing a weighted sum of the



luminance contrast sensitivity of all pixels p in f b, as shown in Equation
10:

Cv( f b) = ∑
p∈ f b

w(p)Cn(p) (10)

where w(p) is the pixel weight; w(p) is set to 1
w·h ; (w,h) are the width

and height of the output framebuffer; ∑p∈ f b w(p) = 1.
In process 3, the CSF-based visual loss feature γvis of the foveated

rendering result f b is obtained by the difference between the perceptual
quality in the full resolution Cv(gt) and that in the foveated rendering
Cv( f b), as shown in Equation 11:

γvis =Cv(gt)−Cv( f b) (11)

4.1.2 Audio-visual Feature-based Perceptual Quality Modelling
We jointly model the perceptual quality based on auditory and visual
features. Specifically, given the auditory perception-loudness feature
γld , the auditory perception-frequency feature γ f q, and the CSF-based
visual loss feature γvis, we construct the model AvPM(γld ,γ f q,γvis) to
predict the visual perceptual quality score µ of the foveated rendering
result.
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Fig. 4: Plots of µ as a function of the auditory perception loudness feature
(a) and the reciprocal of the auditory perception frequency feature (b).

The experimental results of the pilot user study demonstrate that
both loudness and frequency significantly affect perceived visual qual-
ity in foveated rendering. To describe the relationship between the
visual perceptual quality score µ and audio loudness and frequency,
we conduct fitting analyses based on audio loudness and frequency for
the experimental results. Specifically, we combine the data in the pilot
user study across all foveated rendering conditions to form a merged
dataset. Each entry in this dataset includes audio loudness, frequency,
and the corresponding µ . We visualize µ as a function of auditory
features in Fig. 4 based on the merged dataset. In Fig. 4 (a), we convert
audio loudness lu f s into the auditory perception-loudness feature γld
on the x-axis. We find an approximately positive linear relationship
between γld and µ . This indicates that auditory perception-loudness
affects visual perception; higher perception-loudness audio reduces
visual sensitivity, allowing users to accept lower rendering quality with-
out a decrease in perceived quality, which is consistent with previous
research findings [34, 36]. In Fig. 4 (b), we convert audio frequency
kHz to the reciprocal of the auditory perception-frequency feature 1

γ f q

on the x-axis. Based on different audio loudness conditions, we fit µ

according to 1
γ f q

. As shown in Fig. 4 (b), when the auditory perception-

loudness feature value is essentially consistent, 1
γ f q

and µ exhibit an
approximately positive correlation. Experimental data demonstrate that
as perception frequency increases, visual perception declines. Previous
research indicates that the loudness perceived by the HAS varies with
frequency, showing greater sensitivity to high frequencies in the 2-5kHz
range [10]. Therefore, we can utilize high-perception-frequency au-
dio to dynamically adjust the shading rate, achieving more aggressive
foveated rendering without compromising visual fidelity.

In terms of the visual feature, the higher the value of the CSF-based
visual loss feature, the more likely the user perceives the visual loss,
resulting in lower µ . According to [11, 18, 26], the finding is that there
is a negative relationship between the CSF-based visual loss feature

and µ . Based on the above findings, we derive four rules to instruct the
model construction:
Rule 1: γld is linearly positively correlated with µ;

Rule 2: 1
γ f q

is linearly positively correlated with µ;

Rule 3: γvis is negatively correlated with µ;

Rule 4: all features should be normalized to the same scale to facilitate
the fitting of AvPM.

According to the above rules, we adopt the most straightforward poly-
nomial to fit the visual perceptual quality score µ based on the auditory
and visual features, as shown in Equation 12:

AvPM(γld ,γ f q,γvis) = a · γld +
b

γ f q
− c · γvis

10000
+d (12)

where γld , 1
γ f q

, and γvis
10000 are in the same scale; a,b,c,d are coefficients

to be fitted.
Given that the training data set D contains n entries, Equation 13

describes the optimization of AvPM according to Rules 1-4:

minimize
1
2
||X ·A−H||

s.t. a > 0,b > 0,c > 0,d > 0

A = [a,b,c,d]T

X =

γld
1 1

γ f q

1
γvis

10000
1

1
... ... ... 1

γld
n 1

γ f q

n
γvis

10000
n

1


H =

µ
1

...
µ

n



(13)

where A is the coefficient matrix, X is the feature matrix, and H is
the score matrix. Each row in X represents the average feature values
[γ f q, γld , γvis

10000 ] contained in the corresponding entry in D . We add
a constant 1 to the last column of each row in X to facilitate the dot
product with A. Each row in H represents the average visual perceptual
quality score µ of the corresponding entry in D . At last, we employ the
constrained least square method [35] to optimize Equation 13, yielding
the optimized model AvPM, as shown in Equation 14:

AvPM(γld ,γ f q,γvis) = 0.05γld +
0.45
γ f q
−0.19

γvis

10000
+3.63 (14)

where the coefficient of determination R2 is 0.80 for the fitted results
of AvPM on the training set D .

4.2 Foveated Rendering Cost Optimization
According to the guidance of AvPM, we propose the foveated rendering
cost optimization algorithm (FRCO) to further enhance the foveated
rendering performance without perceived visual loss. FRCO aims to
minimize the shading rate for each pixel block in the output framebuffer
while ensuring no significant perceived visual loss compared with the
state-of-the-art VR-HMD foveated rendering method. Specifically,
given the full resolution of the output framebuffer (w,h), the fixed size
of pixel block (wb,hb), the predefined shading rate array SR, and the
audio-visual feature-driven perception model AvPM, FRCO outputs
the required shading rate map mapsr to define the shading rate of
each pixel block in the output framebuffer, as shown in Algorithm
2. Since VRS’s minimum fixed-size block is 16×16. the predefined
shading rate provided by VRS contains limited options, including 1

4×
1
4 ,

1
2 ×

1
4 , 1

2 ×
1
2 , and 1×1. Thus, (wb,hb) is set to 16×16, SR is an array

formed by sorting predefined shading rate values in VRS according to
ascending order.



Algorithm 2: Foveated Rendering Cost Optimization
input :full resolution of the output framebuffer (w,h), fixed

size of pixel block (wb,hb), predefined shading rate
array SR, auditory perception-loudness feature γld ,
auditory perception-frequency feature γ f q, the
CSF-based visual loss feature γvis, audio-visual
feature-driven perception model AvPM

output :required shading rate map mapsr

1 B← genPxBlocks([ w
wb

, h
hb

])

2 mapsr ← initSRmap([ w
wb

, h
hb

], max(SR))
3 E0 ← impVisualLossThr(SvPM)
4 for b ∈ B do
5 for sr ∈ SR do
6 if isMinSR(b, sr, E0) is True then
7 mapsr[b]← sr
8 break
9 else

10 continue
11 end
12 end
13 end
14 return mapsr

In Algorithm 2, we divide all pixels in the output framebuffer into
pixel block map B based on the full resolution of the output framebuffer
(w,h) and fixed size of pixel block (wb,hb), and each pixel block b in
B contains wb×hb pixels (line 1). We initialize the required shading
rate map mapsr in line 2, with the dimensions identical to those of B.
Each value in mapsr defines the corresponding shading rate for pixel
blocks within B, and each value is initialized to the maximum shading
rate in SR, i.e., 1×1.

Then, we calculate the imperceptible visual loss threshold E0 (line
3). When the perceived visual quality of the current foveated rendering
result qualified by AvPM is greater than or equal to this value, the per-
ceived visual quality of the current foveated rendering is comparable
to that of the state-of-the-art VR-HMD foveated rendering method.
According to the optimized result of the model AvPM in Equation 14,
when γld , 1

γ f q
and γvis are approaching 0, the predicted visual perceptual

quality score µ is 3.63. It means that when there is no effect of audi-
tory features in VR scenes, the CSF-based visual loss is 0 compared
with the state-of-the-art VR-HMD foveated rendering when the visual
perceptual quality score is 3.63. Thus, E0 is set to 3.63.

In lines 4-13, we aim to minimize the shading rate sr of every pixel
block b in B while ensuring no significant perceived visual loss com-
pared with the state-of-the-art VR-HMD foveated rendering method,
which can be formulated by Equation 15:

minimize Λ = ∑
sr∈mapsr

sr

s.t. AvPM(γld ,γ f q,γvis)≥ E0

(15)

where Λ is the cumulative sum of the shading rate in mapsr.
According to Equations 11 and 14, AvPM can be formulated as

Equation 16:

AvPM = 0.05γld +
0.45
γ f q
−0.19

Cv(gt)−Cv( f b)
10000

+3.63 (16)

Therefore, we derive the constraint inequality in Equation 15 and obtain
Equation 17:

Cv(gt)−Cv( f b)≤ 10000
0.19

(0.05γld +
0.45
γ f q

+3.63−E0) (17)

For any moment in VR scenes, auditory features γld and γ f q are
independent of shading rates and can be computed before shad-
ing. Therefore, the right-hand side of the above inequality is a

Fig. 5: Visualization of all tested VR scenes for the main user study.

constant at any moment, which we simplify to a constant α , i.e.,
α = 10000

0.19 (0.05γld +
0.45
γ f q

+ 3.63−E0). Equation 17 can be formu-
lated as Equation 18:

∑
b∈B

w(b)(Cv(gt[b])−Cv([b]))≤ ∑
b∈B

w(b)α (18)

where B is the pixel block map. For optimizing the shading rate of each
pixel block b in B, we adopt a sufficient solution of the above inequality,
wherein the difference in luminance contrast sensitivity for b is less
than the constant α . This aims to conservatively select the shading rate
for b without reducing visual loss, as shown in Equation 19:

∑
f∈B

Cn(
√

b.sr · f ,b)−Cn( f ,b)≤ α (19)

where f is the peak frequency of the corresponding frequency band in
B, and b.sr is the shading rate of b. Since ∑ f∈B Cn( f ,b) is computed
in the CSF-based visual loss feature extraction, which can be considered
as a constant in Equation 19. We set β = α +∑ f∈B Cn( f ,b), the
function isMinSR in line 6 can be formulated by Equation 20:

minimize sr

s.t. ∑
f∈B

Cn(
√

sr · f ,b)≤ β (20)

We traverse the shading rate options in SR in ascending order to find the
minimum shading rate sr that satisfies Equation 20 and set mapsr[b]=sr,
which means sr is the shading rate of b (lines 5-12). After the shading
rates of all pixel blocks in B are determined (line 13), we return the
required shading rate map mapsr (line 14). Finally, VRS renders the
output foveated rendering framebuffer based on the shading rate of all
pixels determined by mapsr.

5 EVALUATION

In this section, we evaluate the perceived visual rendering quality and
performance of our method (AvFR). In Section 5.1, we give the im-
plementation details of this evaluation. In Section 5.2, we conduct a
user study to evaluate the perceptual fidelity between AvFR and the
state-of-the-art VR-HMD foveated rendering method [26]. Then, in
Section 5.3, we measure the performance improvement by further ana-
lyzing time savings in each step of the rendering pipeline. To validate
the effectiveness of AvFR, we also ablate different audio features used
to optimize foveated rendering in Supplement Section 2.2.

We formulate two hypotheses for the evaluation:
H2 AvFR achieves a perceived visual quality similar to the state-of-the-
art VR-HMD foveated rendering method with significant performance
improvement in VR scenes with auditory content.
H3 AvFR significantly improves the perceived visual quality com-
pared with state-of-the-art VR-HMD foveated rendering method with a
similar rendering performance in VR scenes with auditory content.

5.1 Implementation

To evaluate AvFR in VR, we construct four VR scenes containing
auditory content: street, f orest, library, and room, as shown in Fig. 5.
And the consistency of the auditory content with the semantics of the
visual content is proven valid. We apply a reuse strategy to accelerate
AvFR. The details of test scenes and reuse strategy are demonstrated in
Supplement Section 2.1.



5.2 Main User Study
Motivated by the experiments of Patney et al. [26], we conduct a
psychophysical user study to measure the perceived visual rendering
quality degradation experienced by the participants during the free
exploration of VR scenes. "Free exploration" is notably a condition
where the participants can freely roam and rotate their heads/eyes to
naturally investigate immersive scenes.

5.2.1 User Study Design
Setup The hardware setup and the program operating environment of
this study are the same as those of the pilot user study.

Table 2: Post-hoc analysis of between AvFR and other conditions for the
percentage of the observed artifacts.

measure Comparisons mean dif. std. dif. p

Bonferroni AvFR FR -0.01 0.02 1.00
FR′ -0.39 0.02 3.25×10−54

Tukey AvFR FR -0.01 0.02 0.78
FR′ -0.39 0.02 5.10×10−9
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Participants We recruit 25 participants, consisting of 13 males and
12 females, aged between 18 and 50, with an average age of 31. None
of the participants have taken part in pilot user studies, and 11 of
them have prior experience using VR HMDs. All participants have
normal hearing and vision or have their vision corrected to normal
levels through glasses.
Conditions The methods used to render VR scenes include the audio-
visual foveated rendering method (AvFR), the state-of-the-art VR-HMD
foveated rendering method (FR) [26], and the state-of-the-art VR-HMD
foveated rendering method with a similar average rendering cost as
AvFR (FR′).
Procedure All participants are instructed to freely explore the four
scenes shown in Fig. 5 using three different rendering methods. Each
exploration lasts for 90s. In the scene exploration, participants’ initial
positions and segments of auditory content are fixed, with the audio
starting to play simultaneously as they begin their exploration. Since
the audio length far exceeds the exploration time, this design helps pre-
vent participants from feeling constrained by the exploration duration,
allowing them to remain immersed in the experience even as the audio
nears its end. After each exploration trial, participants are required to

answer a two-alternative forced-choice question: "Do you notice any
visual artifacts?" They then provide a visual perceptual quality score µ

for their exploration. The order of trials is randomized. Since the audi-
tory content duration for all scenes exceeds 90s, there are no unnatural
audio interruptions or switches during the exploration process. Each
experiment consists of 12 trials, and each participant takes an average
of 21min to complete all trials. A total of 25 (participants) × 4 (scenes)
× 3 (conditions) = 300 trials are collected.

5.2.2 Results and Discussion
We conduct an ANOVA analysis to evaluate the perceived visual qual-
ity differences among AvFR, FR, and FR′. Additionally, we perform
Tukey and Bonferroni post-hoc analyses to examine individual differ-
ences between AvFR and both FR and FR′. The following are the
results of these analyses.

For the two-alternative forced-choice question, we use the proportion
of trials in which participants notice artifacts as one of the perceptual
quality metrics. Lower values indicate better perceived visual quality,
meaning less noticeable visual modulation. Fig. 6 plots the user-
reported values for each scene under each condition. As shown in
the figure, the average percentage of observed artifacts is 21.88±7.66
under AvFR, 23.13±7.46 under FR, and 59.38±9.93 under FR′. The
effect test for the three conditions regarding observed artifacts yields
(F2,237 = 273.79, p= 2.47×10−62, η2

p = 0.70), indicating a significant
difference among the three conditions. Table 2 presents the post-hoc
statistical results comparing AvFR with the other two conditions us-
ing both the Bonferroni and Tukey methods. The p-values from both
methods show no significant difference in observed artifacts when com-
paring AvFR with FR. However, the percentage of artifacts observed
under AvFR is significantly lower than that of FR′.

Table 3: Post-hoc analysis of between AvFR and other conditions for µ.

measure Comparisons mean dif. std. dif. p

Bonferroni AvFR FR 0.03 0.09 1.00
FR′ 0.90 0.09 1.04×10−17

Tukey AvFR FR 0.03 0.09 0.93
FR′ 0.90 0.09 5.10×10−9

Fig. 7 gives the average values and standard deviations of the visual
perceptual quality score µ when exploring four tested VR scenes under
three conditions: AvFR, FR, and FR′. Fig. 7 presents the average
values and standard deviations of the visual perceptual quality score
µ for the exploration of four tested VR scenes under three conditions:
AvFR, FR, and FR′. The effect test for the three conditions in µ yields
(F2,237 = 57.31, p = 4.97×10−21, η2

p = 0.33), indicating a significant
difference among the three conditions in µ . Consistent with the trends
observed in the two alternative forced-choice statistics, the average
µ for AvFR in street, f orest, and apartment is higher than that of
FR. However, in the library, the average µ for AvFR is slightly lower
than that for FR. Participants reported that the lighting in library is
dim, and slight artifacts appear at the edges of some books during
exploration. This is attributed to the reduced accuracy of the CSF-
based visual loss feature extraction, which relies on luminance-CSF in
low-light scenes, thereby weakening the guiding effect of the audio-
visual feature-driven perception model. Consequently, certain artifacts
emerge during the rendering process, affecting perceived visual quality.
Table 3 presents the post-hoc statistical results comparing AvFR with
the other two conditions for µ , using both the Bonferroni and Tukey
methods. Compared with FR, the p-values from both methods indicate
no significant difference in µ . Therefore, we get Conclusion 1: AvFR
achieves a perceived visual quality similar to that of the state-of-the-art
VR-HMD foveated rendering method.

The average µ of AvFR is significantly higher than that of FR′ across
all tested scenes. According to the participants’ feedback, the reduction
in the shading rate of FR′ in periphery leads to a noticeable decrease in
the rendering quality. According to the statistical results of Bonferroni
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Fig. 8: Rendering results comparison among the full-resolution rendering, AvFR, FR, and FR′ in apartment.

and Tukey in Table 3, AvFR achieves significant improvement in µ

when compared with FR′. Thus, we arrive at Conclusion 2: AvFR
significantly improves the perceived visual quality compared with the
state-of-the-art VR-HMD foveated rendering method with a similar
average rendering cost in VR scenes with auditory content. Therefore,
the results support H3.
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Fig. 9: Time cost plots of AvFR and FR in four tested VR scenes.

To further evaluate the rendering quality of AvFR, Fig. 8 com-
pares AvFR, FR, and FR′ with the full-resolution rendering result in
apartment. In Fig. 8, the shading rate maps for AvFR, FR, and FR′
are visualized in the bottom right corner of the rendering results. Green
and red boxes highlight the salient regions in the periphery, which are
magnified on the right side of each rendering result. Compared to FR,
AvFR effectively preserves the geometric contours of the books and
enhances the salient glossy rendering effects in regions near the fovea,
demonstrating improved performance. Additionally, when compared to
FR′, AvFR shows significant improvements in the rendering results.

5.3 Performance Evaluation
In the performance evaluation, we divide the VRS-based foveated ren-
dering pipeline into four steps: geometry processing, material rendering,
shadow and depth rendering, and post processing. In FR, the geome-
try processing stage is responsible for various tasks, including vertex
processing, clipping, perspective division, and viewport transformation.
In AvFR, this stage includes an additional process for computing the
required shading rate map. Since AvFR needs to compute this shading
rate map to guide frame rendering, and the time cost for this compu-
tation is less than 0.5ms across all four scenes, it is challenging to list
it separately. Therefore, we combine it into the geometry processing
stage. The material rendering stage is primarily responsible for texture
mapping and material-based lighting shading. Shadow and depth ren-
dering handles shadow mapping, depth testing, depth of field effect, etc.
The post processing stage focuses on tone mapping, anti-aliasing, color
correction, etc. Fig. 9 visualizes the plots of the stacked time cost of
AvFR and FR in street (a), f orest (b), library (c), and apartment (d).

As shown in Fig. 9, the time costs of AvFR are lower than those of FR
in all four scenes.

Table 4 shows the time-cost speedup of each step in the rendering
pipeline and the overall performance improvement of AvFR over FR.
Since post processing operates on uniform pixels in screen space, the
performance improvement of AvFR is mainly reflected in the first three
steps, and there is no performance improvement in the post processing
step. Material rendering is the key step for AvFR to achieve rendering
performance improvement, accounting for 63% of the total time cost
on average. AvFR improves performance by 1.3-1.4× compared with
FR in this step. The large number of geometric meshes in f orest leads
to significantly higher time consumption in the geometry processing
stage than in the other three scenes. However, due to the reduction in
the number of geometric processing objects required in AvFR, perfor-
mance in this stage improves by 1.5× compared to FR. In apartment,
although the time cost in the post processing stage is around 0.3ms, the
performance of color correction and tone mapping sees further improve-
ment due to the reduced shading quantity achieved by the constructed
shading rate map in AvFR. This leads to a 1.4× speedup in the post
processing stage compared to FR. In library, the large number of light
sources increases the number of shadow maps. AvFR more aggressively
reduces the overall number of sampled shadow maps, greatly enhanc-
ing the performance of the shadow and depth rendering stage by 3.6×.
In all scenes, AvFR achieves an overall performance improvement of
1.2-1.4× compared with FR. We compare the p-value and Cohen’s d
of the total time cost per frame by AvFR and FR in the four scenes.
p-values are all 0.00, and the values of Cohen’s d are 17.11, 55.54,
33.14, and 37.16 in street, f orest, apartment, and library, with the
effect sizes all being huge. Therefore, we have Conclusion 3: The
rendering performance improvement of AvFR compared with FR is
significant. Thus, based on Conclusion 1 in the main user study and
Conclusion 3 in the performance evaluation, the results support H2.

6 CONCLUSION, LIMITATION, AND FUTURE WORK

The analysis of auditory-content-based perceived rendering quality has
shown that auditory content significantly influences the perceived visual
quality in foveated rendering for VR scenes. Based on these findings,
we propose the audio-visual aware foveated rendering method (AvFR)
to significantly accelerate foveated rendering performance without
sacrificing visual fidelity in VR scenes with auditory content. Compared
to the state-of-the-art foveated rendering methods, AvFR achieves up to
a 1.4× speedup while maintaining similar perceived visual rendering
quality.

Since the human auditory system perceives auditory content in VR
scenes as background audio through headphones in HMDs, the pro-
posed AvFR in this paper does not consider the effects of auditory
content coming from different directions on visual perception in an
immersive VR environment. This limitation arises from the lack of
high-quality 360◦ panoramic video datasets that include spatial audi-
tory content, which need to uniformly cover low, medium, and high
levels of loudness and frequency. As a result, there is insufficient data
support for building perceptual models based on spatial characteristics.
Additionally, the spatial features of auditory content often need to be
integrated with specific scene object content, necessitating more com-
plex perceptual modeling, which can challenge rendering performance.
Conversely, experimental results indicate that loudness and frequency
of audio are sufficient to significantly enhance rendering performance,
suggesting that the investment in spatial perception may not provide



Table 4: Time cost comparison between AvFR and FR in each step of the rendering pipeline.

scene
geometry processing material rendering shadow and depth rendering post processing total

time cost speeduptime cost speedup time cost speedup time cost speedup time cost speedup

str. 0.84 1.0 4.56 1.3 2.76 1.1 0.15 0.9 8.31 1.2

f or. 8.34 1.5 6.67 1.3 1.43 1.0 0.13 1.0 16.57 1.4

apa. 0.46 1.1 9.88 1.4 3.70 1.0 0.22 1.4 14.26 1.3

lib. 0.69 1.1 10.89 1.3 0.37 3.6 0.13 1.0 12.08 1.3

adequate returns in terms of performance improvement. The first pos-
sible future work is to build a VR scene dataset that includes spatial
auditory content, associating auditory elements with scene objects;
then advances the audio-visual perception model to enhance foveated
rendering quality and performance in VR. On the other hand, AvFR
focuses on optimizing the shading rate within the graphics pipeline and
does not address potential aliasing caused by rendering effects such
as motion blur and complex materials. Therefore, the other potential
future work is to quantify the visual perception of different rendering
effects in VR scenes with auditory content, and use this as a basis to
optimize the quality of complex rendering effects in foveated rendering.
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In this document, we provide supplemental pilot user studies and
evaluation details in support of the main text. The experimental results
in supplemental pilot user studies validate that, compared with the non-
auditory condition, the enabling visual-semantic-consistent auditory
content creates significant differences in visual-perception attention,
and enhances the perceived visual quality in VR. Additionally, the
supplementary details of the evaluation illustrate the specific implemen-
tation of the audio-visual aware foveated rendering method (AvFR) and
the test scenes, and ablate the different features of AvFR in terms of
the rendering performance.

1 PILOT USER STUDIES

In this section, we conduct the supplementary pilot user study 1 to
evaluate the effect of auditory content on visual perception in Section
1.1, explore the factors contributing to the perceived visual quality
gap between auditory and non-auditory conditions in Section 1.2, and
demonstrate the dataset auditory content expansion details for the pilot
user study in the main text in Section 1.3.

1.1 Supplementary Pilot User Study 1: Evaluating Audio
Effects on Visual Perception

Based on the theoretical basis in Section 3 in the main text, we conduct
the supplementary pilot user study 1 to evaluate the impact of having
auditory content versus not having it on visual perception in VR. We
formulate the hypothesis for the supplementary pilot user study 1:
H3 Viewing scenes with visual-semantic-consistent auditory content
enhances perceived visual quality compared to silent scenes in VR.

1.1.1 User Study Design
Setup We use a PICO 4 Pro HMD powered by a workstation with a
3.9Hz Intel® Core™ i9-12900K CPU, 32GB RAM, and an NVIDIA
GeForce GTX 3080 Ti graphic card. The resolution of the HMD is
2160×2160 pixels for each eye, and the field-of-view is 105◦. The
program is developed with C# and is run in Unity 2021.3.13f1.
Participants We recruit 20 participants, including 10 males and 10
females, aged 18 to 50, with an average age of 35. All participants have
normal hearing and vision or have corrected vision through glasses.
Ten of them have experience using HMD VR applications before the
study.

F
o
re

st
 S

tr
ea

m
U

rb
an

 S
tr

ee
t

Fig. 1: Visualization of all scenes in the 360◦ panoramic video dataset D.

Dataset To compare the impact of different auditory conditions on
the visual perception in VR, we construct a 360◦ panoramic video
dataset D with auditory content, as visualized in Fig. 1. D includes
two types of scenes, namely, forest stream and urban street, with 10
entries for each scene type. All scenes in D utilize original audio to
eliminate the impact of semantic inconsistencies between auditory and
visual content on visual perception. The selection of forest stream and
urban street as scene types is based on their auditory attributes, which
cover the perceivable loudness and frequency range of the HAS. This
ensures a diversity of auditory content under visually similar conditions,
facilitating an understanding of how visual perception is affected by
different auditory conditions in VR. Due to the ability of lu f s and Hz to
accurately describe the loudness and frequency of the auditory content
perceived by the HAS, we use lu f s and Hz as the units to represent
the loudness and frequency of the auditory content in VR scenes. The
value range of lu f s is from negative infinity to 0, with values closer
to 0 indicating higher loudness. The value range of Hz is from 0 to
positive infinity, with larger values representing higher frequencies and
higher sound pitches.

To compare the impact of different auditory conditions on visual
perception in VR, we construct a 360◦ panoramic video dataset D with
auditory content, as visualized in Fig. 1. D includes two types of scenes,
namely, forest stream and urban street, with 10 entries for each scene
type. All scenes in D utilize original audio to eliminate the impact of
semantic inconsistencies between auditory and visual content on visual
perception. The selection of forest stream and urban street as scene
types is based on their auditory attributes, which cover the perceivable
loudness and frequency range of the hearing aid system (HAS). This
ensures a diversity of auditory content under visually similar conditions,
facilitating an understanding of how visual perception is affected by
different auditory conditions in VR. Because lu f s (Loudness Units Full
Scale) and Hz (hertz) accurately describe the loudness and frequency
of auditory content perceived by the HAS, we use lu f s and Hz as the
units to represent the loudness and frequency of the auditory content
in VR scenes. The value range of lu f s is from negative infinity to 0,
with values closer to 0 indicating higher loudness. The value range of
Hz is from 0 to positive infinity, with larger values representing higher
frequencies and higher sound pitches.

In the real world, ranges of loudness and frequency are [-35, -10]lu f s
and [1, 6]kHz, which can be perceived by the HAS and are safe for
prolonged exposure without risking hearing damage [2, 6]. The audio
loudness and frequency range in the scenes included in D uniformly
cover these real-world audio loudness and frequency ranges. To avoid
the effect of audio spatial location on user perception, audio is inte-
grated as background sound in VR scenes and is not linked to any
specific object. It is played through the HMD headset during the view-
ing of audio-enabled panoramic videos.
Condition In the supplementary pilot user study 1, the panoramic
video with its original audio enabled in D presented in full resolution is
regarded as the experimental condition (EC), while the full-resolution
video with audio disabled is regarded as the control condition (CC).
Procedure We ask each participant to view all 20 scenes in D. These
scenes are presented using two conditions, EC and CC, in a randomized
order for participants to view for 20s. Before viewing the scenes, we
visualize the artifacts generated by the 360◦ panoramic video stitch-
ing and instruct participants to ignore the artifacts from the stitching
process in the 360◦ panoramic videos. After each scene presentation,
participants are required to give the visual perceptual quality score, µ ,



μ

(a) urban street
1 2 3 4 5 6 7 8 9 10

(b) forest stream
1 2 3 4 5 6 7 8 9 10

μ

Fig. 2: Average values and standard deviations of µ under CC in all
scenes included in two scene types in the supplementary pilot user study
1.

of the presented scene, and then the next scene is presented. The visual
perceptual quality score µ [7] includes five confidence levels: 5 rep-
resents that they cannot perceive artifacts at all, 4 represents that they
can perceive acceptable artifacts for only a few very short moments, 3
represents that they can perceive acceptable artifacts, 2 represents that
they can perceive noticeable artifacts, and 1 represents that they can
perceive obvious artifacts. On average, each participant spends 15min.
A total of 20 (participants) × 2 (scene types) × 10 (scenes in one scene
type) × 2 (conditions) = 800 trials are collected.

1.1.2 Results and Discussion

We use the ANOVA method for pair-wise comparisons. The following
are the results of the analysis.

Firstly, we compared the differences in perceived quality among
scenes within the two scene types in CC. Fig. 2 presents the average
values and standard deviations of µ for all urban street and forest stream
scenes. In all scenes, the average values of µ range from 3.05 to 3.30.
Then, we run an ANOVA analysis to measure the impacts of scene
types and individual scenes on µ . The effect of scene types on µ is
(F1,780 = 1.92, p= 0.17, η2

p = 0.00), and the effect of individual scenes
on µ is (F9,780 = 0.21, p = 0.99, η2

p = 0.00). We use the partial eta
squared η2

p to measure the effect size of the pair-wise difference. The
effect sizes for scene types and individual scenes are small, indicating
no significant perceived visual differences between the two scene types
among all scenes.

forest stream urban street

μ

*
*

Fig. 3: Average values and standard
deviations of µ under different scene
types in the supplementary pilot user
study 1. Asterisks indicate significant
differences.

Fig. 3 gives the average
values and standard deviations
of µ under EC and CC in
both forest stream and urban
street scene types. The aver-
age µ for EC is higher than
that for CC in both scene types.
The effect test between EC
and CC is (F1,798 = 188.77,
p = 1.03×10−38, η2

p = 0.19),
which shows that there is a
significant difference between
EC and CC in µ . In conclu-
sion, enabling visual-semantic-
consistent auditory content in
VR significantly enhances per-
ceived visual quality for partici-
pants. Thus, the results support
H3.

Fig. 4 visualizes the gaze motion heatmaps under two auditory con-
ditions for specific scenes in both scene types. The results indicate that
the salient regions in gaze motion are similar between the two auditory
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Auditory Content enabled Auditory Content disabled

Fig. 4: Visualization of gaze motion when the auditory content is en-
abled/disabled in two scene types in the supplementary pilot user study
1.

conditions. However, according to participant feedback, three partic-
ipants report that viewing audio-enabled scenes enhances immersion
and directs their attention more toward objects likely to emit sounds.
This inconsistency arises from the discrepancy between explicit gaze
trajectories and implicit cognitive resource-based attention allocation.
Specifically, gaze motion heatmaps reflect only explicit gaze trajecto-
ries, while participants’ report involves implicit attention allocation
influenced by cognitive resources. Implicit attention is not solely deter-
mined by gaze motion; it is also regulated by neural interactions and
attention shifts, which can lead to visual perception suppression [3, 5].
As a result, even when gaze trajectories are similar, differences in atten-
tion allocation can still occur, ultimately affecting participants’ visual
perception. To investigate this further, we conduct the supplementary
pilot user study 2 in Section 1.2 to evaluate visual-perception attention
between EC and CC.

1.2 Supplementary Pilot User Study 2: Evaluating Visual-
perception Attention under Different Auditory Condi-
tions

In this section, we conduct the supplementary pilot user study 2
to evaluate the visual-perception attention with auditory content en-
abled/disabled in VR. We formulate the hypothesis for the supplemen-
tary pilot user study 2:
H4 Visual-perception attention is significantly different when the
visual-semantic-consistent auditory content is enabled versus disabled
in VR.

1.2.1 User Study Design

Setup and Dataset The hardware setup and the program operating
environment of this study are the same as those of the supplementary
pilot user study 1. We utilize the 360◦ panoramic video dataset D
constructed in the supplementary pilot user study 1 to evaluate the
visual-perception attention.
Participants and Condition We recruit 20 participants, including 10
males and 10 females, aged 18 to 50, with an average age of 27. All
participants have normal hearing and vision or have corrected vision
through glasses. Twelve of them have experience using HMD VR
applications before the study. The conditions in the supplementary
pilot user study 2 are the same as the supplementary pilot user study 1,
meaning that the panoramic video with its original audio enabled in D
presented in full resolution is regarded as the experimental condition
(EC), while the full-resolution video with audio disabled is regarded as
the control condition (CC).
Attention Evaluation Task We present a rapid serial visual presen-
tation (RSVP) [1] to modulate the visual-perception attention when
viewing scenes in VR. Inspired by [4], the RSVP stimulus consists of
N 1◦×1◦ letters, each lasting 300/Nms with 0ms blank in between. In
the RSVP, the color of the letters alternates between red and yellow,
and the sequence of letter colors for each scene is randomized and
fixed. The participant is instructed to view the VR scene freely and to
navigate through all areas of the scene as thoroughly as possible during
each trial. The RSVP stimulus is triggered at a random time point



Fig. 5: Photograph of the supplementary pilot user study 2 setup. The
inset shows an enlarged illustration of the stimulus presented in the HMD;
the participant is viewing a forest stream-type scene, and the RSVP letter
task is randomly presented within an eccentricity range of 0–49◦.
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Fig. 6: Average values and standard error of the identification accuracy
of the attention evaluation task under different scene types in the supple-
mentary pilot user study 2. Asterisks indicate significant differences.

in the range of 5-8s in the scene view, with its presentation position
following a uniform spatial probability distribution across the 0-49◦
range of the eccentric angle. To control for the interference of irrelevant
variables on visual-perception attention, the trigger timing, position,
and color parameters of the RSVP stimuli are kept consistent under
EC and CC. Fig. 5 shows that RSVP is presented when the participant
is in the scene view. The view time for each trial is 15s. After the
scene view, the participant is asked to identify the color of the "target
letter" (predefined before each scene view). Increasing N increases the
difficulty of the visual-perception attention evaluation task. Two task
levels are chosen, with N values set to 2 (easy) and 4 (hard), to force
the implementation of two difficulty levels—low and high—for the
visual-perception attention evaluation task. In the same task difficulty,
the identification accuracy of the target letter color is used to evaluate
the level of visual perceptual attention in VR.

Procedure We ask each participant to view all 20 scenes in D. These
scenes are presented using two conditions, EC and CC, and two atten-
tion evaluation task levels, low and high, in a randomized order for
participants to view for 15s. The participant is instructed to complete
the attention evaluation task after each scene view. Specifically, after
each scene view, the participant has 10s to use the controller’s joystick
to choose the color of the target letter, with the left side representing
red and the right side representing green. At the end of each trial, the
screen will turn black, and the participant will have a 5s rest period
to clear the visual afterimage of the pattern. To control attention bias
in consecutive testing, the experiment adopts a phased execution plan:
each participant completes 8 trials per day over 10 consecutive days to
finish the entire experimental procedure. Before each day’s experiment
begins, participants are required to explore the entire scene to eliminate
the interference from goal-directed behavior in the visual-perception
attention evaluation. On average, each participant spends 45min. A
total of 20 (participants) × 2 (scene types) × 10 (scenes in one scene
type) × 2 (conditions) × 2 (levels) = 1600 trials are collected.

1.2.2 Results and Discussion
We conduct an ANOVA analysis to evaluate the differences in visual-
perception attention based on the identification accuracy in visual-
perception attention evaluation tasks.

Fig. 6 presents the average values and standard error of the iden-
tification accuracy in both low-level and high-level visual-perception
attention evaluation tasks. The effect test for scene types on the iden-
tification accuracy is (F1,1520 = 0.01, p = 0.91, η2

p = 0.00), and is
(F19,1520 = 0.66, p = 0.74, η2

p = 0.00) for individual scenes, which
indicate that there are no significant differences in the visual-perception
attention between two scene types among all scenes.

The effect test for EC and CC regarding the identification accu-
racy is (F1,1520 = 132.17, p = 0.00, η2

p = 0.08) in low level, and is
(F1,1520 = 268.24, p = 0.00, η2

p = 0.15) in high level. From forest
stream to urban street, under low and high difficulty conditions, the
p-values are 7.96×10−4, 1.28×10−4, 1.16×10−3, and 5.38×10−5,
respectively. All p-values are less than 0.01, indicating that the iden-
tification accuracy under EC is significantly lower than that under
CC under all scene types and task difficulty levels. The identification
accuracy in high-level task is lower than in low-level task across all
conditions and scene types, and the gap between EC and CC further
widens as task difficulty increases. Thus, the results support H4. Exper-
imental results indicate that, compared with the non-auditory condition,
the auditory condition significantly diminishes the visual-perception at-
tention, and this diminishment effect becomes increasingly pronounced
as the visual task difficulty increases. This effect contributes to the
significant perceived visual quality gap between EC and CC in the
supplementary pilot user study 1.

1.3 Dataset Auditory Content Expansion in Pilot User
Study

To facilitate the comparison of how auditory content with different
frequencies and loudness affects visual perception in the pilot user
study, we expand dataset D by adding two different frequency audi-
tory contents for each scene, resulting in each scene containing three
types of auditory content covering low, mid, and high frequencies, thus
obtaining the expanded dataset D′. To ensure the auditory content is
semantically consistent with the visual content in D′, we recruit 10
participants to evaluate the semantic consistency between the auditory
and visual content of all scenes. Each participant views each scene in
D′ with three different auditory contents in random order, each viewing
session lasting 20s. At the end of each scene view, the participant
answers a two-alternative forced-choice question: "Is the audio seman-
tics consistent with the visual semantics of the scene?" The positive
consistency rates for all auditory contents in each scene are ≥ 80% in
D′. Therefore, we conclude that the visual and auditory contents of all
scenes in D′ are semantically consistent. Fig. 7 visualizes the coverage
range of audio loudness and frequency of all scenes in D′. The loudness
coverage range for each scene in Fig. 7 is obtained by adjusting the
audio volume on the workstation to low, medium, and high levels, then
merging the three auditory contents for calculation. The frequency cov-
erage range corresponds to the frequency ranges of the three types of
auditory content. As shown in Fig. 7, the audio loudness and frequency
of each scene in D′ uniformly cover the perceivable and safe-exposed
audio loudness range (-35 to -10lu f s) and the frequency range (1 to
6kHz).

2 SUPPLEMENTAL DETAILS OF EVALUATION

2.1 Implementation Details
In the implementation of step 1 in AvFR, we reuse the full-resolution
rendering result from the previous frame, reducing both its width and
height to 1

4 of the original size to serve as the low-resolution rendering
result for the current frame. This approach aims to extract the CSF-
based visual loss feature. Next, we combine real-time audio from the
scene to extract auditory features, constructing the audio-visual feature-
driven perception model. In step 2 of AvFR, E0 is set to 3.63. This
implementation enables the required shading rate map computation in
AvFR to be ≤0.5ms, resulting in a negligible impact on performance.



Fig. 7: Coverage range of audio loudness (a) and frequency (b) in the 360◦ panoramic video dataset D′.

To evaluate AvFR in VR, we construct four VR scenes containing au-
ditory content: street, f orest, library, and room. In street, the number
of triangles contained in street is 11781.32k, and the auditory content
consists of birdcalls and fountain sounds, lasting 150s, with an audio
loudness range of [-34.70, -10.50]lu f s and an audio frequency range
of [1.57, 5.20]kHz. The number of triangles contained in f orest is
54789.28k, and the auditory content in f orest is the sound of a water-
fall, lasting 150s, with an audio loudness range of [-33.80, -10.4l]lu f s
and an audio frequency range of [1.47, 5.50]kHz. The number of trian-
gles contained in apartment is 3036.64k, and the auditory content is
the sound of a music video playing on the television, lasting 253s, with
an audio loudness range of [-34.91, -13.30]lu f s and an audio frequency
range of [1.32, 5.75]kHz. The number of triangles contained in library
is 8847.41k, and the auditory content is the sound of commonly used
library closing music, lasting 205s, with an audio loudness range of
[-34.70, -12.71]lu f s and an audio frequency range of [1.41, 5.58]kHz.

To ensure the consistency of the auditory content with the semantics
of the visual content, we recruit 10 participants to evaluate the semantic
consistency between the auditory and visual content of four VR scenes.
Each participant is allowed to freely explore the four scenes using the
full-resolution rendering method, with each scene lasting 90s. Before
each exploration, we introduce the auditory content for that scene to
the participant. At the end of each scene exploration, participants
answer the question: "Is the audio semantics consistent with the visual
semantics of the scene?" The positive consistency rates for the audio
selected for all four scenes are all ≥ 80%.

(a) Auditory Content enabled (b) Auditory Content disabled

Gaze

Fig. 8: Rendering results of AvFR in apartment with auditory content
enabled (a) and disabled (b).

2.2 Ablation Evaluation
To validate the rendering advantages of AvFR in VR scenes with audi-
tory content, we visualize the shading rate map of AvFR along with its
corresponding rendering results in apartment in Fig. 8, both with audi-
tory content enabled (a) and disabled (b). When the auditory content
is disabled, a high shading rate for AvFR is observed not only in the
foveal region but also in salient peripheral areas due to its eccentricity-
CSF-based characteristics. This results in a performance decrease
compared to FR, with an average frame rate of 45 f ps in apartment.
When auditory content is enabled, AvFR further optimizes the shading
rate, achieving an average frame rate of 70 f ps, which represents a

1.6× speedup compared to the auditory-content-disabled apartment.
Additionally, it preserves rendering details in salient peripheral regions,
such as the contours of book objects and glossy rendering effects.

Table 1: Performance Ablation
on AvPM’s features of AvFR in
apartment.

Components speedup
γvis γld

1
γ f q

% % % 0.4×
" % % 0.8×
" " % 1.2×
" % " 1.1×

" " " 1.3×

Several features of the proposed
AvPM influence the rendering per-
formance of AvFR. In Table 1,
we visualize the performance ac-
celeration of AvFR compared to
FR when enabling and disabling
different features of AvPM in the
apartment scene. When the CSF-
based visual loss feature γvis, the au-
ditory perception-loudness feature
γld , and the auditory perception-
frequency feature γ f q are disabled,
AvFR defaults to full-resolution ren-
dering, resulting in a 2.2× decrease
in rendering performance. With
only γvis enabled, AvFR reverts
to eccentricity-CSF-based foveated
rendering, which focuses on high-CSF regions in the periphery, leading
to a decrease in performance compared to FR. Furthermore, when
AvPM accelerates AvFR using bothγvis and γld , the performance im-
proves by 1.2× compared to FR. Disabling γld while enabling γvis and
γ f q also results in a 1.1× speedup. The ablation experiment demon-
strates that in apartment, both auditory loudness and frequency con-
tribute to the performance enhancement of AvFR, with loudness having
a greater impact.
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