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Fig. 1: An example of the PwP group selection process. For a scene with many objects scattered (a), a user can use our method
to select these objects. (b) shows the result of group-selected objects, and each group is marked with a specific color. Finally, by
restoring them, all the objects can be placed where they were originally (c). Our group selection method consists of multiple rounds
of the PwP module, which contains a selection and rearrangement submodules (e). In the selection submodule, the user can mark
several objects with a color to group-select them, and in the rearrangement submodule, a probability-based rearrangement algorithm is
applied to change the object’s layout to facilitate more batch selection. Through the PwP module, the objects can be rearranged from a
disorganized layout (d) to a well-ordered one (f).

Abstract—Group selection in virtual reality is an important means of multi-object selection, which allows users to quickly group multiple
objects and can significantly improve the operation efficiency of multiple types of objects. In this paper, we propose a group selection
method based on multiple rounds of probability permutation, in which the efficiency of group selection is substantially improved
by making the object layout of the next round easier to be batch-selected through interactive selection, object grouping probability
computation, and position rearrangement in each round of the selection process. We conducted ablation experiments to determine the
algorithm coefficients and validate the effectiveness of the algorithm. In addition, an empirical user study was conducted to evaluate
the ability of our method to significantly improve the efficiency of the group selection task in an immersive virtual reality environment.
The reduced operations also indirectly reduce the user task load and improve usability.

Index Terms—Group selection, permutation, probability propagation, user study, virtual reality

1 INTRODUCTION

The interaction between users and virtual objects is at the core of
creating immersive interactive experiences in virtual reality (VR) envi-
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ronments. Object selection, as one of the hot topics in this field, is a
critical component. Currently, researchers have proposed various selec-
tion methods [5, 14, 43, 45], including single-object and multi-object
selection, and have achieved good results in improving selection accu-
racy and efficiency. However, in complex virtual scenes where many
diverse objects are randomly scattered, there is often a need to quickly
classify and select different types of virtual objects. To this end, it is
necessary to develop a method that can rapidly select and group many
randomly distributed and diverse objects. For instance, in VR strategy
games, players need to quickly select and organize multiple units on
the battlefield to address complex tactical needs. In VR home design,
users must efficiently select and arrange various furniture pieces. In VR
content creation applications, artists can swiftly select and categorize
3D parts using group selection methods, enhancing the efficiency of
tasks like coloring large numbers of components.

Existing virtual object selection methods face several challenges
when applied to the group selection scenarios described above. In
highly cluttered multi-object scenes, objects within the same group
are seldom clustered together, making it difficult to enhance efficiency
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through box or volume selection techniques, especially when dealing
with large numbers of objects. Additionally, some multi-ray or multi-
bubble selection methods require precise operations, which can quickly
lead to a heavy workload for users.

To address these problems, we propose a permutating with probabil-
ity (PwP) method to facilitate efficient multi-object group selection in
an immersive virtual environment. The core principle of this method
is to update the object layout based on grouping probabilities, thereby
reducing randomness and enabling more efficient batch selections in
subsequent rounds. The PwP method calculates the group probabili-
ties for all objects to be selected based on the user’s group selection
input. It then rearranges the positions of all objects according to these
probability calculations to create a layout that is optimized for batch
selection, ultimately improving selection efficiency. To achieve this,
we introduce the probability propagation and position rearrangement
algorithms for probabilistic permutation. The probability propagation
algorithm begins with the objects that have been selected by the group,
then calculates and updates the grouping probabilities of unselected
objects following specific rules (e.g., decay with distance, fluctuations).
Subsequently, the objects are repositioned near their most likely group
center based on their updated probabilities, leading to a more structured
and efficient layout. We conducted an empirical user study to evaluate
the performance of our PwP method. Compared to the traditional and
the state-of-the-art methods, our method performs best under conditions
of varying group sizes and levels of layout orderedness. In addition, our
approach significantly reduces the task load and improves the usability
of group selection tasks. Fig. 1 shows an example of our PwP method
workflow. After several (in this case, 3) rounds of the PwP module,
originally scattered objects are all selected and grouped. Finally, one
can choose to restore the objects to their original positions.

The contributions of this paper are summarised as follows:

• We proposed a permutating with probability multi-object group
selection framework, which allows multiple rounds of interactive
selection and rearrangement of target objects to enable dramatic
efficiency improvement.

• We develop a probability propagation algorithm based on two
strategies to update the grouping probability to decide the group-
ing priority of the remaining objects to be selected.

• We introduced a position rearrangement algorithm based on the
grouping probability to relocate the positions of the target ob-
jects, which can reduce the layout randomness and make the next
selection round easier.

• We evaluated the performance of our proposed PwP method
through ablation experiments and conducted an empirical user
study to validate the method’s effectiveness in an immersive vir-
tual environment.

In summary, our approach combines advanced algorithms and user-
centered design to provide an innovative solution to the group selection
problem in VR environments. These innovations not only advance
the development of VR interaction technology but also open up new
possibilities for future research and applications.

2 RELATED WORK

We briefly introduce the prior works from three perspectives: single-
object selection, multi-object selection, and object group selection. For
a more comprehensive illustration, we recommend readers to the survey
papers [1] and [22].

2.1 Single-object selection

Single-object selection techniques allow the user to pick one virtual
object per selection operation [2, 4, 5, 7, 14, 18, 41, 43, 46, 47]. Early
single-object selection techniques were primarily based on emitting
rays, which were calculated to intersect objects and confirm the target
object selected by the user [5, 12, 15, 46]. For example, Olwal et al.
present a virtual, flexible pointer that allows a user in a 3D environment
to point more easily to fully or partially obscured objects [15]. Later, a

dynamic object rating method was proposed to assist 3D object selec-
tion and increase selecting accuracy [12]. To increase the usability of
selection techniques, some researchers focus on the selection in dense
environments [7, 39]. Recently, Delamare et al. proposed MultiFin-
gerBubble, a new variation of the 3D Bubble Cursor, which can select
multiple target objects with the user’s multiple fingers [14].

In addition to ray-based methods, many object manipulation methods
also support the ability to select object [9, 21, 26–28, 37, 44]. Early
explorations of this type of research propose novel and efficient object
manipulation methods, like Go-Go [28], WIM [37], and Voodoo Dolls
[26]. In recent years, researchers have proposed many optimization
methods based on them. Wu et al. proposed EEBA, an efficient and
ergonomic big-arm for distant object manipulation based on elbow
angle mapping optimization [44]. The task of these methods is object
manipulation. However, objects must be selected before they can be
manipulated, so they also enable object selection.

The above methods are mainly conducted using VR controllers.
With the development of computer vision and multi-modal technology,
more and more selection methods are using gestures, head movement,
eye movements, and other input methods [3, 8, 10, 20, 24, 32–35, 40,
42]. Sidenmark et al. introduced Outline Pursuits, which extends
a primary pointing modality for gaze-assisted selection of occluded
objects [33]. They have conducted a user study to compare gaze,
head, and controller-based selection [35]. Luong et al. investigated
the performance differences between controller and bare-hand-based
interactions in VR [20].

2.2 Multi-object selection
There are already several works on multi-object selection, which allow
users to select multiple objects at a time [19, 31, 45, 49, 51]. Zhang et
al. presented a new 3D user interface for selecting an arbitrarily shaped
region of interest (ROI) in virtual reality [49]. Wu et al. compared point-
based selection and volume-based batch selection techniques through a
user study [45]. The results showed that the point-based technique was
more efficient and robust than the volume-based techniques in dense
and disorganized environments.

Another research direction focuses on regional multi-object selec-
tion in high-density environment, e.g., point cloud selection, protein
molecule region selection, etc. [23, 29, 36, 48, 50] In the earlier decade,
Stenholt et al. explored various selection tools, such as a brush, a lasso,
and a magic wand for large-scale multi-object selection [36]. Later, Yu
et al. presented a family of three interactive Context-Aware Selection
Techniques (CAST) for analyzing large 3D particle datasets, which
improves usability and speed of spatial selection in point clouds [48].
Recently, Zhao et al. proposed three novel spatial data selection tech-
niques that are context-aware and be suitable for a wide range of data
features and complex scenarios [50].

2.3 Object group selection
Group selection was first studied in a two-dimensional screen virtual
environment for 3D modeling applications [25, 38]. The groups of
objects in these works are predefined, such as gravitational hierarchy.
Debarba proposed the LOP cursor, a metaphor that shows possible
suitability for group selection with its two-legged cursor design (one for
selection and the other for grouping) [13]. Unlike the broad exploration
of object selection techniques, little prior work has been studied on
the grouping selection for immersive virtual environments. Some
researchers conducted later alignment tasks for grouped objects. For
example, Felice et al. created StickyLines, a tool that treats guidelines
for object alignment [11]. Shi et al. present four interaction techniques
for three degrees-of-freedom translational alignments [30].

In our paper, the object group selection task refers to the technology
that allows users to freely group scene objects through an interactive
mode of object selection and classification. Unlike multi-object selec-
tion, which focuses on selecting multiple objects simultaneously, group
selection emphasizes the speed and ease of selecting and classifying
scene objects. Group selection is a composite task that combines object
selection techniques with label classification methods. However, group
selection can be inefficient in scenes with a large number of objects
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Fig. 2: Pipeline of our PwP group selection method. Compared to the traditional batch and point selection approach, we facilitate multiple rounds of
batch selection with the PwP module consisting of two stages: probability propagation and position rearrangement. During the probability propagation
stage, we compute the likelihood of each object belonging to each group. In the position rearrangement stage, we then reposition all the objects
based on these calculated probabilities, moving each object to a location closer to its highest grouping probability. Our group selection method
enables 40-60% of efficiency improvement.

and a chaotic distribution. This paper introduces new strategies and
optimization algorithms designed to increase the proportion of multi-
object selection operations, thereby improving the efficiency of group
selection by reducing the level of disorder in the spatial distribution of
objects.

3 METHOD

As mentioned above, the advantage of point-and-click selection lies
in its convenience for selecting a single object. Still, it is inefficient
since only one object can be selected at a time. Batch selection allows
for the selection of multiple objects in a single operation, which is
efficient; however, it is prone to mis-grouping randomly distributed
objects, making it difficult to distinguish between different groups
of objects. Therefore, we propose the Permutating with Probability
(PwP) method to achieve the selection of multiple groups of randomly
distributed objects with fewer operations.

This section describes the details of our PwP method. The basic
principle of the method involves multiple rounds of selection of objects
randomly distributed in a virtual environment. After each selection
round, the probability of grouping for each object is calculated, and the
positions are rearranged to reduce the randomness, facilitating more
batch selections in the next round. We first introduce the basic pipeline
of our PwP method (Sec. 3.1), followed by detailed explanations of two
important algorithms involved in the framework. Sec. 3.2 describes how
to calculate the grouping probability of objects after the user completes
a round of selection, and Sec. 3.3 describes how to rearrange the objects
based on the calculated grouping probabilities to reduce the randomness
of the objects.

3.1 Pipeline
Fig. 2 presents the pipeline of our PwP method. Unlike traditional
approaches that combine batch selection with point selection for multi-
object grouping, our method aims to enable the user to perform more
batch selections, thereby improving the efficiency of group selection
(Fig. 2, top). Our method achieves this through multiple rounds of
batch selection combined with the PwP module.

Fig. 2, bottom provides a detailed explanation of the PwP module.
For any selection round, the user first batch selects several objects and
marks them into their groups (a). Then, the PwP module is applied.
The module consists of two stages. In the first stage (b), the grouping
probability of each object will be calculated. The selected objects’
grouping probability will be initialized according to their groups, and

others’ grouping probability will be calculated according to their spatial
relations to the selected objects, using our probability propagation
strategy. In the second stage (c), the positions of all the objects will
be rearranged according to their grouping probabilities. This stage
places the selected objects into their group areas and moves un-selected
objects toward their likely group areas. Once the rearrangement stage
is completed, the next selection round begins, iterating until all objects
are successfully selected and grouped.

3.2 Probability Propagation
Our method guides the update of object positions by assigning grouping
probabilities to all objects. The goal is to arrange the objects in a way
that facilitates more batch selection in the next round. In this section,
we detail our strategy for calculating grouping probabilities.

3.2.1 Problem Formulation
Without loss of generality, consider that we are selecting n objects
to be grouped into m groups. The set of n objects is represented
as T = {T1,T2, ...,Tn}, and the m groups are represented as G =
{G1,G2, ...,Gm}. For any object Ti, we define its grouping probability
as follows:

PTi = {P(Ti,G1),P(Ti,G2), ...,P(Ti,Gm)} (1)

here, P(Ti,Gi) represents the probability that object Ti should be se-
lected into group Gi. For all objects, the grouping selection probability
matrix is an n×m matrix.

P = {P�
T1
,P�

T2
, ...,P�

Tn
}� (2)

Thus, the goal of the group selection task is to optimize the row vectors
of this matrix into standard unit probability vectors containing only 0
and 1, meaning that all objects have been selected into their groups.

3.2.2 Propagation Strategy
We proposed a probability propagation algorithm to calculate the group-
ing probability for the objects. As shown in Fig. 2, the input contains
selected and un-selected objects for our PwP module. For a selected
object, since the user assigns its group, the corresponding probability
element of the group in the grouping probability vector is set to 1, and
others are set to 0. For an un-selected object, we define two strategies,
Proximity exclusion and Interval transfer, to calculate its grouping
probability.
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Fig. 3: Illustration of two propagation strategies: (a) proximity exclusion
and (b) interval propagation.

Proximity exclusion We observed that after a user makes a batch
selection, objects adjacent to the selected object boundaries tend to
belong to different groups. Therefore, the probability that these objects
belong to the selected object group should be low. As shown in Fig. 3,
(a), for a set of grouped objects Gi(represented as orange tetrahedrons),
there are three adjacent un-selected objects T1,T2,T3,(gray tetrahe-
drons). According to Our proximity exclusion strategy, the probability
of the three adjacent surrounding objects grouped into Gi should be
low, and the closer the object is to Gi, the lower the probability. Hence,
P(T1,Gi)< P(T2,Gi)< P(T3,Gi).

Interval propagation The interval propagation strategy means
that for objects that have been grouped, the probability that the object
closest to it is in the same group decreases. In contrast, the probability
that the object further down is in the same group increases relatively,
and so on. As shown in Fig. 3, (b), for the grouped objects, there are
four un-selected objects in the near. For T4, the probability should
be low according to the proximity exclusion strategy. For T5, the
probability should rise sharply, mainly affected by T4. For T6, the
probability should drop normally, mainly affected by T5. For T7, the
probability should rise slightly, mainly affected by T6. In summary, the
probability from near to far should decrease and rise in turn. Moreover,
the influence of such interval propagation should be limited to Gi’s
certain extent, and it will no longer be affected by Gi beyond a certain
distance threshold.

3.2.3 Implementation
We designed a probability propagation algorithm based on the breadth-
first search algorithm to calculate and update the probabilities for each
object. Instead of building a search graph for the objects, which is time-
consuming, we construct a spatial grid to accelerate the propagation
process. We first calculate the total bounding box of n objects to be
selected to construct the spatial grid. Then, we find the smallest object
bounding box edge length lmin and set it to the edge length of the grid
cube cell, and then the grid is successfully constructed, as shown in
Fig. 4. This ensures that each grid cube contains at most one object.

The probability propagation algorithm mainly contains four steps:
initializing, queue construction, propagation, and probability amplifier.

I. Initializing: In the initializing step, we mark the selected and
grouped objects and set their grouping probability as a standard unit
vector ek, k is the group number it belongs to. The grouping probability
vector of these objects has not been updated ever since.

II. Queue construction: The queue construction process is similar
to the Breadth-First Search algorithm. Fig. 4, (b) illustrates the queue
construction (top) and propagation process (bottom). The left is the
spatial grid, and the objects {A,B,C,D,E} are selected and grouped.
They are separated into groups 1 for A,B,andC and 2 for D,E, then
pushed into the queue Q head. In this context, we call them seeds.

We apply a breadth-first search algorithm starting from the grids in
the group regions. For each group region, the outer first-layer grid is
tested. If an unselected object is present, it is pushed into the queue.
Then, we apply the same test to the second-layer grid until all unselected
objects are in the queue. For example, in Fig. 4, (b) top, objects
{T1,T2,T3} and {T4,T5,T6} are in the first and second layers of the
group 1 region. Objects {T7,T8} and {T9,T10,T11} are in the first
and second layers of the group 2 region. Following the principles above,
they are all pushed into the queue Q with the present order. Thus, the

Fig. 4: Probability Propagation implementation. (a) The total bounding
box of all objects is first partitioned into grid cube cells with the cube
side lengths set to lmin. (b) Then, a propagation queue is constructed
to help calculate each object’s grouping probability. For an object Ti, its
grouping probability is based on all the objects in front of it.

selected and grouped objects have the highest orders, and the closer
layer grid the un-selected objects are in, the higher their orders are in
the queue.

III. Propagation: Since we have constructed the queue, we can
apply the probability propagation along the queue. The propagation
starts from the first un-selected object, e.g., object T1 in Fig. 4, (b)
bottom. To satisfy the two propagation strategies, we introduce the
calculation of the probability of each object of the propagation process
as follows:

Pi = Pi � (�1− P1

σi1
)�·· ·� (�1− Pj

σi j
), j = i−1 (3)

here, i represents the queue pointer, thus the current calculating object
queue number. Pi represents the grouping probability of the i-th object
in the queue. The operator � represents the Hadamard product. σi j
reflects the distance between the i-th and j-th objects in queue, which
is defined as follow:

σi j = (
max(|xi − x j|, |yi − y j|, |zi − z j|)

lmin
)λ (4)

here, (xi,yi,zi) is the i-th object’s position coordinate in virtual envi-
ronment. λ is a user-defined coefficient, we set λ = 0.3 in this paper.

The essence of the probability propagation is the design of the
distance descriptor σi j in Eq. (4). On the one hand, σi j increase when

the distance of i-th and j-th objects increase, and �1− Pj
σi j

increase,

subsequently, Pi increase. This reflects the proximity exclusion strategy.
On the other hand, according to the above analysis, σi j makes that the
closer two objects are, the greater the difference between their grouping
probabilities. This reflects the interval propagation strategy.

IV. Probability Amplifier: From Eq. (3), we know that the group-
ing probability of the objects in the queue is calculated from the group-
ing probability of the objects in the queue in front of it, and the prob-
ability propagation process of the whole queue starts from the seeds.
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However, the total amount of probability values is not large due to
the small number of seeds as a proportion of all objects in each round
of user selection, and the larger distance between objects causes the
impact of the propagated probabilities to be further reduced.

Therefore, we designed an amplifier to amplify the probability of
grouping objects after the probability propagation to ensure the prop-
agation wave remains significant. For an arbitrary un-selected object
Ti, suppose its grouping probability is PTi = {α1,α2, ...,αm}. We first
find the infinite norm γ = max(α1,α2, ...,αm), the amplifier A can be
illustrated as follow:

A (PTi) =

{
β
γ PTi , γ < β

PTi , γ ≥ β
(5)

Here, we set the amplifying coefficient β = 0.8 in this paper. Note that
the sum of the elements in the grouping probability vector can be larger
than 1 in the context.

In addition, we also designed an iterative strategy for each round
of the PwP module, which is to repeat the propagation multiple times
according to the proportion of seed objects. Suppose that the proportion
of selected objects for the current round in the scene is η . We can
calculate the iteration times Ω as follows:

Ω =

⎧⎪⎨
⎪⎩

4 , 0 < η ≤ 1/8
3 , 1/8 < η ≤ 1/4
2 , 1/4 < η ≤ 1/2
1 , 1/2 < η ≤ 1

(6)

3.3 Position rearrangement
In Sec. 3.2, we computed the grouping probabilities of the objects with
the probability propagation algorithm, and this section describes how
to rearrange the objects based on the obtained grouping probabilities
for the next round of user selection.

3.3.1 Rearrangement Principles
We formulate the following principles for the object rearrangement to
facilitate easy batch selection for the net round user selection.

• Decentralized group centers Before the first round of object
rearrangement, the center positions of each group need to be
determined. These center positions should be as far away from
each other as possible, and at the same time, try to avoid the
three group center positions sharing the same line to make the
subsequent selection of objects easier for users and reduce the
occurrence of mis-selections.

• Negative Correlation This principle means that the higher the
probability value of an object in a group, the closer it should be
located to that group, making it more likely to be selected in the
next selection round.

• No overlapping There should be no large overlap area between
objects while ensuring that they are relocated according to their
grouping probabilities.

3.3.2 Setting Group Centers
Following the first rearrangement principle, we designed several group
center layout settings. We tend to set the centers on the boundary of
the bounding box of all objects. As shown in Fig. 5, we design four
layouts for the object rearrangement with group number m ranging
from 1 to 16. The four group center layouts are used for the four group
number scenarios, 0<m≤ 4, 4<m≤ 8, 8<m≤ 12, and 12<m≤ 16,
respectively. When the group number m > 16, users are allowed to
manually specify new group centers manually.

3.3.3 Objects Rearrangement
In Sec. 3.2.3, we divided the total bounding box of all objects into a
cubic grid with cube side length lmin. Above, we have set the group-
ing center position vectors of the objects C = {C1,C2, ...,Cm}. Now,
we describe how to rearrange the objects according to their grouping
probabilities in the current round.

3

21

4

(a)  0 < m ≤ 4

3 2

1 4
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67
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(b)  4 < m ≤ 8
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9
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(d)  12 <m < 16

Fig. 5: Four group center layouts. Group center positions are marked as
gray dots with numbers

The object rearrangement consists of mainly two steps: probability
truncation and Interpolation.

I. Probability Truncation: We will compute the object’s rearrange-
ment position through probability interpolation to move the object
closer to the possible group center. However, since the probabilities of
low-probability groupings also play a role in the interpolated positions
of the objects, direct use of the original grouping probabilities makes
it less efficient to rearrange the positions towards the possible group
centers (i.e., those with higher probabilities). We propose probability
truncation to speed up this process. By setting probability components
smaller than the median to zero, the effect of less probable groupings
on the rearranged positions of objects can be eliminated. For example,
if the original grouping probability is PTi = α = {α1,α2, ...,αm}, and
the new grouping probability after truncation is α∗ = {α∗

1 ,α
∗
2 , ...,α

∗
m}.

The probability truncation can be represents as the function F as:

α∗ = F (α) (7)

satisfying:

α∗
i =

{
αi, αi > med(α)
0, αi ≤ med(α)

(8)

here, med(α) represent the median value of α .
II. Interpolation: We apply a simple interpolation to compute the

rearrangement location Hi(xi,yi,zi) for a object as follow:

Hi =
∑m

i=1 α∗
i Ci

∑m
i=1 α∗

i
(9)

After we get the rearrangement location of an object, we find the
corresponding gird cube according to it and place it directly. If another
object is already inside the target cube, we find the nearest empty
cube to place the object at the center through the Breadth-First Search
algorithm.

4 PILOT EXPERIMENT

In this section, we applied a pilot experiment to determine the two co-
efficients, λ in Eq. (4) and β in Eq. (5), for our probability propagation
algorithm. The performance of our method is affected by the ordered-
ness of the objects to be selected. Therefore, we define an indicator
describing the object orderedness level for subsequent experiments.

4.1 Orderedness Level
For a set of objects T containing n objects of m groups in the scene,
we aimed to define S to indicate their orderedness level. The larger
S is, the more organized they are. The calculation process of S is
illustrated below.

Single object For any single object Ti, let s(Ti) reflect the propor-
tion of space surrounding Ti occupied by objects in the same group,
which satisfying:

s(Ti) =
1

8

8

∑
k=1

ε ik (10)

here, ε ik indicates that whether T i
k belongs to the same group as Ti.

T i
k represents the object closest to Ti in the kth octant of Oi−xyz, where

Oi−xyz is a space rectangular coordinate system with Ti as the origin
and parallel to the world coordinate system. ε ik is defined as follow:

ε ik =

{
1 , T i

k and Ti belong to the same group

0 , T i
k and Ti belong to different groups

(11)
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Objects set For the object set T, the total orderedness S is define
as:

S = ηS̄ =
η
n

n

∑
i=1

s(Ti) (12)

here, S̄ = 1
n ∑n

i=1 s(Ti) is the average of all the object’s orderedness.
η is the normalization parameter to regularize the orderedness level
into range [0,1].

Normalization To decide the normalization parameter η , we first
define two objects set states:

I. S = 0: In this state, for each Ti, the closest objects in the eight
octants all belong to other groups.

II. S = 1: In this state, all objects are clustered into their groups,
formed as m cube sets.

As shown in Fig. 6, (a) shows the definition of the objects with
S = 1. (b) shows one of the clustered a× a× a cube set. Each tiny
cube represents an object’s location. In this cube set, there are:

• (a−2)3 interior objects Tin, where s(Tin) = 1.

• 6(a−2)2 white objects on surfaces Tsur f , where s(Tsur f ) =
1
2 .

• 12(a−2) blue objects on edges Tedge, where s(Tedge) =
1
4 .

• 8 grey objects on vertexes Tvert , where s(Tvert) =
1
8 .

……

…
…

……

…
…

……

…
…

……

…
…

(a) grouped scene where ܵ = 1 (b) a particular objects group

edge object
surface object interior object (invisible)
vertex object

ܽ=4

Fig. 6: (a) The objects scene with the highest orderedness level (State
II). (b) One of the cube-shaped clustered groups with sidelength a = 4.
Different colors are only used to distinguish different position types.

For the total objects set T, the average side length ā of the cube
formed by each group is

ā = 3

√
n
m

(13)

then,

S̄ =
m
n

[
(ā−2)3 +

6(ā−2)2

2
+

12(ā−2)

4
+

8

8

]
=
( ā−1

ā

)3
(14)

since in this state, we have S = 1. Finally, we get:

η =
S

S̄
=

n(
3
√

n− 3
√

m
)3

(15)

4.2 Coefficient Determination
In this section, we perform the pilot experiment to analyze the influence
of the coefficients λ and β on our method. We designed an experiment
scene (in Fig. 7) containing n = 120 objects in m = 8 groups, the
orderedness level of the objects in the scene is S = 0.2. We recruited
8 participants in the pilot experiment. They all had immersive VR
application experiences before. In the experiments, they were asked to
use our PwP method to group select the scattered objects in the scene
following the rules below:

• Participants should make at least one and no more than one selec-
tion per group in each selection round.

• Participants shall be prioritized for batch selection.

Fig. 7: The experiment scene used in the pilot user study. There were
120 objects divided into eight groups, and the different groups were
distinguished by different shapes. The orderedness level is S = 0.2.

The metric of the experiment is the number of the group selection
round Ngs. We first set λ = 0.5 and changed β from 0.6 to 1.0 in
increments of 0.1. Then, we set β = 0.8 and changed λ from 0.2 to 0.6
in increments of 0.1. The results are shown in Tab. 1. According to the
results, we set λ = 0.3 and β = 0.8 in the subsequent user study.

Table 1: The result number of the group selection round (in times),
averaged within 8 participants.

β (λ = 0.5) 0.6 0.7 0.8 0.9 1.0

Ngs 10.13 7.50 6.38 6.63 12.25

λ (β = 0.8) 0.2 0.3 0.4 0.5 0.6

Ngs 6.13 4.75 5.50 6.38 8.25

5 USER STUDY

5.1 Overview and Hypotheses
After the pilot experiments, we obtained the coefficients for the al-
gorithm used in the method. In this section, we aimed to explore
the efficiency performance and validate that the proposed method can
reduce the number of user operations in group selection tasks. We
formulated the following hypotheses:

H1. The PwP method can significantly reduce the time cost for group
selection tasks.

H2. The PwP method can significantly reduce the number of user
operations for group selection tasks.

5.2 Participants and Apparatus
We recruited 18 participants, ten males, and eight females (none of
whom participated in the pilot experiment), ranging from 20 to 28
years old (M = 24.39,SD = 2.11), with normal vision (or corrected-to-
normal vision by wearing glasses). Twelve had used immersive HMD
VR applications before, and none reported balance disorders.

Our system used a Pico 4 pro headset powered by a workstation with
a 3.8GHz Intel(R) Core(TM) i7-10700KF CPU, 32GB of RAM, and
an NVIDIA GeForce RTX 3080Ti graphics card. The tracked physical
space hosting the VR applications is 4×4m2. We used Unity 2020.1
to implement our PwP group selection method. Before participants
started, we measured the inter-pupillary distance (IPD) for them with a
millimeter scale and adjusted the IPD of the headset to meet their best
visual setting. The whole system was running at 90fps for each eye.
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5.3 Study Design
We used a 3× 3× 3 repeated measures within-subject user study de-
sign. Consider the advancement and relevance of the comparative
method, we tested three group selection methods: MultiFingerBub-
ble [14] (CC1), point- and volume-based selection [45] (CC2) and Our
PwP method (EC), with three levels of group number m ∈ {4,7,10},
three orderedness levels S ∈ {0.2,0.5,0.8}. Our PwP method supports
the integration of any effective batch selection method. In this user
study, to ensure consistency with CC2, we used a cube-shaped batch
selection volume. The total number of the candidate objects was the
same (we set it as 120 in the study) for all conditions. For each method,
each group number level, and each orderedness level, when all objects
were selected and grouped, the participant completed a trial. For one
group selection task, a participant should finish 27 trials. In total, we
conducted 18×27 = 486 trials.

ܵ = 0.2 ܵ = 0.5 ܵ = 0.8 

݉=4 
݉=7 

݉=10
 

Fig. 8: Nine object layouts with different m and S levels were used in the
user study. Here, we colored the objects for better illustration.

We conducted the user study in a virtual empty indoor room with the
target objects scattered in front of the participant. Fig. 8 shows all the
object layouts with different m and S levels. Participants were asked
to select and group all presented virtual objects on each trial as quickly
as possible. Objects were grouped by assigning specific colors to them
with three comparison methods. The research was performed under the
oversight of the Biology and Medical Ethics Committee of Beihang
University, with protocol number BM20240277. Consent from the
human subjects in the research was obtained.

5.4 Procedure and Metrics
The user study procedure is shown in Fig. 9. Each participant partic-
ipated in the experiment for nine days. On the first day they arrived
at the experiment site, they signed the information sheet. Then, we
explained and showed them the operations of three group selection
methods. After that, they conducted technical training to familiarize
themselves with the methods. Meanwhile, we assigned each partici-
pant a specific order of the three methods. The balanced Latin square
determined the order.

Questionaries
(NASA TLX 
& SUS) 

Preparation
Trail 1 Rest

• Sign information 
sheet

• Learn methods
• Conduct technical 

training
• Confirm readiness

Session

Partici
pants

2min

Record  and 

Layout 1 Layout 2 Layout 9

…

Trail 4-6 Trail 25-27
End

CC1/
CC2/
EC

CC1/
CC2/
EC

CC1/
CC2/
EC

CC1/
CC2/
EC

Day 1 Day 2 Day 9

CC1/
CC2/
EC

Trail 2 Trail 3

Fig. 9: The experimental procedure of the user study.

We prepared nine object layouts (with different m and S levels),
ordered randomly for each participant throughout the nine days. When
participants were confirmed to be ready, the user study began. Through-
out the user study, participants were instructed to maintain their original
position. While they were allowed to turn their bodies and look around,
they were not permitted to walk or jump to change their position. They
perform group selection tasks for each object layout using three meth-
ods in their specified order. Completing one group selection with one
method is considered one trial. Participants complete three trials per
day and rest for two minutes between trials. Each participant took ap-
proximately 30-60 minutes daily to complete the layout group selection
task.

We counted the following two objective metrics:

• Completion time, the time it took for the participant to complete
a trial.

• Number of operations, the user operation times during each trial.
A complete selection and grouping are recorded as one user oper-
ation.

Despite the above metrics, we also recorded the single-object and multi-
object selection times for both CC and EC methods and the number of
conducting PwP modules for the EC method (marked inside the bars
of the number of operations in Fig. 10).

For subjective metrics, we used the standard NASA TLX question-
naire [16, 17] to measure the task load and the system usability score
(SUS) [6] to measure the usability of the methods. Each participant
filled out the questionnaires after they completed the task.

5.5 Results
5.5.1 Objective Metrics
Fig. 10 gives the results for each objective metric. We conducted a
multivariate analysis of variance (MANOVA) to analyze the effects
of three independent variables (group selection method, number of
groups m, and the layout orderedness S ) on the performance of the
above metrics. For each trial condition, the outlier data points were
first filtered out (±3 standard deviation). We removed 13 data points in
total (2.67%). The outlier numbers for each condition are marked at the
bottom of the bars of the completion time. Before analysis, Shaipro-
Wilk’s test showed that the two dependent variables (completion time
and number of operations) obeyed a normal distribution (p > 0.05).

Interaction Effect Overall, the interaction effect of the three inde-
pendent variables was statistically significant (F32,1683 = 26.942, p <

0.001,ΛWilks = 0.218,η2
p = 0.317). Particularly, there was a statisti-

cally significant effect of the interaction of group selection method
and group number on the dependent variables (F16,1394 = 12.71, p <

0.001,ΛWilks = 0.66,η2
p = 0.099). The interaction of the group se-

lection method and group number on completion time (F4,459 =

20.166, p < 0.001,η2
p = 0.149) and number of operations (F4,459 =

14.905, p < 0.001,η2
p = 0.115) were all statistically significant.

The interaction effect of the group selection method and layout
orderedness on the dependent variables was also statistically signifi-
cant (F16,1394 = 35.371, p < 0.001,ΛWilks = 0.353,η2

p = 0.229). The
interaction of the group selection method and layout orderedness on
completion time (F4,459 = 9.65, p < 0.001,η2

p = 0.074) and number of

operations (F4,459 = 15.686, p < 0.001,η2
p = 0.120) were all statisti-

cally significant.
The interaction effect of the group number and layout orderedness

on the dependent variables was also statistically significant (F16,1394 =

37.458, p < 0.001,ΛWilks = 0.335,η2
p = 0.239). The interaction of the

group number and layout orderedness on completion time (F4,459 =

32.251, p < 0.001,η2
p = 0.219) and number of operations (F4,459 =

21.124, p < 0.001,η2
p = 0.155) were all statistically significant.

Main Effect Multivariate tests show that the main effect of the
group selection method on the dependent variables was statisti-
cally significant (F8,912 = 1505.116, p < 0.001,ΛWilks = 0.005,η2

p =
0.930). Univariate main effect tests revealed statistically signifi-
cant effects of the group selection method on the completion time
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Fig. 10: Objective metrics results. The top row shows the completion time, and the bottom row shows the number of operations of different m and S
layouts for three comparing methods. Different colors distinguish the methods. The error line demonstrates the standard deviation. The outlier
numbers for each condition are marked at the bottom of the bars of the completion time. Numbers of single-/multi-selection/PwP-round times are
marked inside the bars of the bottom row. Significant differences are denoted with asterisks (all compared to the EC method).

(F2,459 = 1923.741, p < 0.001,η2
p = 0.893) and the number of opera-

tions (F2,459 = 1840.177, p< 0.001,η2
p = 0.889). Pairwise comparison

showed statistically significant differences (p < 0.001) among the three
group selection methods on all two objective metrics.

The main effect of the group number on the dependent variables
was also statistically significant (F8,912 = 38.059, p < 0.001,ΛWilks =

0.562,η2
p = 0.250). Univariate main effect tests revealed statisti-

cally significant effects of the group number on the completion time
(F2,459 = 99.836, p < 0.001,η2

p = 0.303) and the number of operations

(F2,459 = 28.864, p< 0.001,η2
p = 0.112). Pairwise comparison showed

statistically significant differences among the three group numbers on
completion time (p < 0.021) and number of operations (p < 0.025).

The main effect of the layout orderedness on the dependent variables
was also statistically significant (F8,912 = 49.370, p < 0.001,ΛWilks =

0.487,η2
p = 0.302). Univariate main effect tests revealed statistically

significant effects of the layout orderedness on the completion time
(F2,459 = 52.486, p < 0.001,η2

p = 0.186) and the number of operations

(F2,459 = 60.946, p< 0.001,η2
p = 0.210). Pairwise comparison showed

no statistically significant differences between S = 0.2 and S = 0.5
on completion time (p = 0.231) and number of operations (p = 0.632).
There were statistically significant differences between S = 0.2 and
S = 0.8, and S = 0.5 and S = 0.8 on the two dependent variables
(p < 0.001).

Comparison of EC For the completion time metric, the effect of
the group number shows there were significant (p < 0.001) differences
between m= 4 and m= 10, and m= 7 and m= 10, except for m= 4 and
m = 7 (p = 1.0). The effect of the layout orderedness shows there were
significant differences between S = 0.2 and S = 0.5 (p = 0.018), and
S = 0.2 and S = 0.8 (p < 0.001), except for S = 0.5 and S = 0.8
(p = 0.1).

For the number of operation metrics, the effect of the group number
shows there were significant (p < 0.001) differences between m = 4

and m = 7, and m = 4 and m = 10, except for m = 7 and m = 10
(p = 1.0). The effect of the layout orderedness shows there were
significant differences between S = 0.2 and S = 0.8 (p < 0.001), and
S = 0.5 and S = 0.8 (p < 0.001), except for S = 0.2 and S = 0.5
(p = 0.137).

5.5.2 Subjective Metrics

In Fig. 11, we report the NASA-TLX scores and the SUS scores for the
three methods. The Holm-Bonferroni corrected post hoc pairwise t-test
is conducted to compare the subscores between the CC methods and
the EC method. For the overall NASA-TLX score and the SUS score,
the EC method shows significant improvement (p < 0.01) compared
to the CC methods. Regarding the subscores of NASA-TLX, the EC
method needs more Mental Demand, and the differences are significant
(p < 0.05) compared to the CC methods. Moreover, for Effort and
Frustration subscores, there are no significant differences (p = 0.78,
p = 0.061) between the EC and CC2 methods, while the differences
are significant (p < 0.001) between the EC and CC1 methods. For
the remaining subscores, the EC method shows statistically significant
improvement.

5.6 Discussion
In conclusion, our proposed PwP method efficiently selects groups
in environments with complex object layouts. During operation,
probability-based grouping effectively reduces the number of user
operations, accelerating the group selection process and reducing the
user workload, exhibiting better system availability.

Regarding group selection efficiency improvement, our approach
is mainly realized by increasing the number of batch selections in
the group selection process through probabilistic propagation and ob-
ject rearrangement clustering. From the results of the single-/batch-
selection/PwP-module times, we can see that the EC method is able
to make more batch selections during the task compared to the CC
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Fig. 11: Plots for NASA-TLX subscores (left of the vertical dash line)
and SUS scores (rightmost column) of the compared three methods.
Statistically significant differences are marked with asterisks.

methods. For a scene with high complexity, the level of orderedness of
the objects increases with each round of the PwP module, enabling the
user to more easily employ batch selection for object group selection.
This significantly differs from the CC2 method, which does not change
the object groups’ orderedness throughout the process. Compared to
the CC1 method, MultiFingerBubble requires users to use multiple fin-
gers to select an object each time, which puts a heavy burden on users.
Although the accuracy of the operation can be improved by optimizing
the objects referred to between fingers, many wrong selections were
still made. We believe these are the reasons why the PwP method can
stand out in the comparison of group selection efficiency. The results
support H1.

In addition, for the PwP method, there was no significant change in
completion time when m = 4 and m = 7, and there was a more signifi-
cant increase in completion time when m increased to 10. Because the
more groups there are, the more difficult it is to conduct batch selection.
As the orderedness decreases, i.e., the more scattered the objects in
the scene, the longer the completion time becomes. When orderedness
is greater than 0.5, the increase in completion time levels off. This is
because the PwP method’s time consumption is concentrated in the first
selection round. When orderedness is larger than 0.5, there are fewer
batch selections in this round, and the increase in time consumption is
mainly related to the total number of objects n and the group number
m.

For the number of operations, compared to the CC2 method, our
method exhibits a smaller number of operations due to the fact that
more batch selections were performed. In terms of the CC1 method,
due to the difficulty of multi-finger manipulation, users often made
incorrect selections, and the indicator of the number of operations was
larger due to the presence of multiple modifications. The results support
H2.

In terms of task load, our method does not dominate in Mental
Demand compared to the other two methods. We think this may be
related to the fact that users are looking for better areas to perform
batch selection during the selection process, and they hope to find more
objects of the same group clustered together. This may be the reason
why their MD subscore is relatively higher. For the rest of the met-
rics, our method shows better task load reduction. Because we have
increased the number of convenient batch selections, we have signifi-
cantly reduced the time to complete the task and demonstrated more
advantageous user task load performance. The above enhancements
result in better user usability of our approach.

6 CONCLUSION, LIMITATIONS AND FUTURE WORKS

We have proposed a novel permutating with probability method aiming
at efficient group selection tasks in an immersive virtual environment.
Our PwP method introduces probability propagation and object posi-

tion rearrangement algorithms to update the object layout over multiple
rounds for fast user selection. We designed ablation experiments to
determine the coefficients involved in the algorithms. We carried out
a user study to verify that our method significantly improves the effi-
ciency of the group selection task compared to traditional multi-object
selection methods while reducing the user task load and exhibiting
better usability. Our PwP method enables fast object selection and
grouping in virtual environments with complex layouts. The grouping
enables efficiency improvement in subsequent virtual reality interac-
tion tasks such as multi-object selection, manipulation, alignment, and
arrangement.

The grouping in our method is not based on predefined object fea-
tures, such as injured soldiers or metal objects, but rather on the features
that emerge through user interactions. Our PwP module relies on the
spatial position of the object selected by the user, along with the po-
sition information of surrounding objects, their spatial relationships,
and the implicit probabilistic features established by the user during the
interaction. This approach provides flexibility, particularly for creative
applications where users (such as artists, architects, etc.) can adjust
the grouping method to suit their own preferences. For instance, users
can freely group cubes and cats together as one category, and dogs and
spheres as another. The only requirement is that the objects they wish
to group are marked with the same color during the selection process.

One limitation of the method is that the current algorithm does not
consider the case where the user is inside the total object bounding box.
Since each round of object position updating is related to the user’s
selection, if the user is inside the enclosing box, there will be a situation
where some objects fall in the user’s viewpoint or behind the user when
calculating the updated object position, resulting in a difficult selection
in the next round. Another limitation is that for real-time considerations,
in the process of probability propagation, we calculate all the objects in
front of the target object in the queue without considering the spatial
distance between the two objects and the topological relationship in
the virtual environment. Another limitation is that our current solution
involves gathering objects into corners and edges to expand the distance
between each group of objects. However, this layout may cause an
occlusion problem. When unselected objects are rearranged between
the front and back groups, the front group can block them, making
selection more difficult.

Future work could explore how to adjust the object position rear-
rangement algorithm when the user is inside the total bounding box
or assign the spatial grid occupied by the user as already rearranged
objects, which would help prevent occlusion.. Another future work
could describe the spatial relationships of objects in the virtual envi-
ronment by building a graph and then considering the distances and
connections between objects when calculating their new positions. For
the occlusion problem, an effective solution is to adopt a dispersed
layout within the user’s field of view, which can help minimize the
chances of objects being obstructed.
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